好有缘导航网

软件故障的社会和经济影响:更大的视角 (软件故障的故障现象)


文章编号:37077 / 分类:行业资讯 / 更新时间:2024-12-13 08:29:56 / 浏览:

在当今技术主导的世界中,软件已经成为社会和经济活动的不可或缺的部分。所有软件都存在故障的可能性,这些故障的影响可能远超我们想象。

软件故障的社会和经济影响更大的视角软件故

故障现象

软件故障是软件系统无法按照预期运行的现象。故障可能由多种因素引起,例如编码错误、设计缺陷或环境因素。

以下是一些常见的软件故障类型:

  • 功能故障:软件无法执行预期的功能,例如计算错误或数据处理错误。
  • 可靠性故障:软件无法持续运行,会经常崩溃或出现其他故障。
  • 性能运营中断,从而导致收入损失。
  • 生产力下降:软件故障可能会减慢工作流程并降低员工的生产力。
  • 声誉损害:涉及关键产品或服务的软件故障可能损害公司的声誉并导致客户流失。
  • 诉讼风险:与软件故障相关的重大损害可能会导致诉讼和巨额罚款。

减轻影响

尽管软件故障不可避免,但有许多措施可以减轻其社会和经济影响。以下是一些关键策略:

  • 注重质量:在软件开发过程中实施严格的质量控制措施,以最大限度地减少缺陷。
  • 冗余和备份:设计和实施冗余系统和备份计划,以在发生故障时提供恢复能力。
  • 持续监控:使用软件监控工具持续监控系统性能,以便及早检测和解决故障。
  • 教育和培训:教育用户和利益相关者了解软件故障的风险和减轻措施。
  • 监管框架:建立监管框架以确保软件开发和部署符合安全和可靠性标准。

结论

软件故障是一个严重的威胁,对社会和经济产生重大影响。通过了解这些影响并实施减轻措施,我们可以减轻故障的风险并确保技术继续为社会和经济进步做出积极贡献。


为什么我的摄像头离线了?

摄像头离线的原因:网络连接故障、电源未插好、软件故障、摄像头故障。

1、网络连接故障

摄像头需要连接到家庭网络才能正常工作。 如果网络连接不稳定或者断开了,摄像头就会离线。 可以尝试重新连接网络或者重启路由器来解决这个问题。

2、电源未插好

如果摄像头没有足够的电力供应,它也会离线。 可以检查摄像头的电源线是否插好,或者更换摄像头的电池来解决这个问题。

3、软件故障

如果摄像头的软件出现了问题,也可能导致它离线。 可以尝试重新安装摄像头的软件或者更新软件来解决这个问题。

4、摄像头故障

如果摄像头本身出现了故障,比如镜头损坏或者摄像头内部零部件损坏,也会导致它离线。 这种情况下,需要更换摄像头或者联系厂家进行维修。

摄像头挑选技巧

1、分辨率问题

我们在进行选购摄像头的时候往往第一个想到的就会是高清,这一般指的是摄像头的分辨率大小。 摄像头的分辨率一般有两种表达方式,一般是后面带P或K字母的,还有一种是几百万的这种,两者之间其实没有本质差别,只是对于分辨率的不同叫法。

2、镜头焦距

摄像头最为核心的部分是镜头,决定了监控的角度范围和监控距离。 通常镜头焦距越大,看的越远,视角范围越小,焦距越小,看的越近,视角范围越大。 另外,还有一些摄像头镜头是可变焦的,可以根据监控场景范围来调整镜头大小,更为灵活方便,但是成本也会相应增加。

数字经济时代,面对新技术变革,企业信息化该如何应对?

整体环境来看目前云计算、大数据、AI已经逐步走向人们的生活,小到个人的信息大到企业的核心数据的安全、价值越来越被重视,而在数字经济2.0下,数据信息、数据应用、数据资产已成为企业竞争力的核心,结合新一代的技术通过数据挖掘、存储、计算、分析、智能、可视化等实现企业自身数据资产化,构建企业自身的数据集市、数据中心、数据工厂,最大程度的将数据价值外显,为企业的经营决策提供坚实的助手、依据。

传统构建数据中心过程中更多是将企业内部沉淀的数据进行统一存储后直接分析展现,往往忽视了数据治理的过程,更多的在数据抽取、分析过程上,由于各业务系统、口径、管理维度不统一、不一致而造成的最终的分析结果不准确,不能有效的支撑企业的经营决策,因此数据标准化治理是数据资产化的基石,建立企业内部数据管理标准、维护标准、对接标准,实现无序到有序,网状至通道,零散至统一,冗余至标准的数据全方位治理与管控。

综上所述,在数字经济时代的浪潮中固化企业数据资产、沉淀企业数据信息必要的一环是数据治理、数据标准化,保证各业务环节、管理口径是统一标准的,消除内部冗余数据、治理数据脏、乱、差的环境,为企业经营决策分析、深度的应用集成奠定坚实的基础,沉淀有价值、有意义的企业数据资产、数据价值。

企业建立全面内部网络、外网、互联网,注意停电故障的偶然性以及外网的安全性。

企业内部的采购、技术、生产、运行、订单、物流、资金使用情况、各车间、各分公司、员工的工作汇报、各数据汇总跟进、开会研究、想法意见等都是可以在网上操作,如每天的工作使用电子邮件( E-mail)汇报。 实现信息有效的流通,实现资源和知识共享,提高工作效率,实现有效管理,明确工作岗位与工作职责,增强人员的责任感,减少工作中的推托、扯皮等现象,大大减少办公开支,降低管理成本。

总之传统企业组织结构臃肿、人员冗杂,信息闭塞,管理决策者与员工之间缺少沟通交流,弊端多多,数学课信息化企业能更有效促进、快速成长发展,更好的与世界接轨,是现代 社会 必不可缺少的。

麦肯锡全球研究院(MGI)报告《数字时代的中国:打造具有全球竞争力的新经济》指出,随着数字化进程的推进,各行各业正在不断拓宽数字技术的应用范围,新一波数字化浪潮已经到来。 数字化的三股推动力——去中介化、分散化和非物质化,到2030年或可转变并创造10%到45%的行业总收入,提升效率、生产力以及中国企业的全球竞争力。 全球22%的GDP源自数字经济,中国数字经济规模达22.58亿元,占GDP比重达30.3%,居全球第二。 贝恩(Bain& Company)预测,至2020年,全球数字经济将达90万亿美元,是世界经济信息网预测2020年世界三大经济体(美中日)GDP综合的两倍多。

数字经济2.0下,数字技术和数据应用将成为未来商业的核心基础。 借助数据挖掘、分析建模、数据集市、计算处理、智能与可视化等技术,通过“数据智能 交易场景 未来商业”,从数字宇宙视角重新看待和思考未来商业范式和业务经营,并重新定义资产、基础设施和生产要素。

目前,通过“数字孪生”技术,将产品、设备、整条生产线和工厂基础设施以数字化的方式呈现,已经成为可能。 领先企业正采用一系列先进的技术实现生产乃至整条供应链的数字化。 这些技术包括大数据分析解决方案、端至端的实时规划和互联、制造执行系统(MES)、自控系统、协作机器人、数字孪生或增强现实等。 凭借这些技术,企业运营效率得以提升,从而能够批量生产高度定制化的产品。 然而,企业要实现智慧工厂,还需要与供应链生态系统和用户进行实时互联,以及通过预测性数据分析和机器学习等手段,做出更智能的决策。

数据是数字化工厂的核心,数据分析和系统互联整合成为关键。 通过传感器,未来的数字化工厂能够产生海量的数据。 随着数据整合和内存方面的技术能力不断完善,数字化工厂与供应链生态体系的实时整合成为可能。 许多企业都已经采用了联网技术,通过MES等技术,以传感器读取频设识别芯片上的数据并传输到数据平台,将零部件、机器、生产管理、运输车辆、工人甚至产品相互连接。 例如博世力士乐在洪堡(Homburg)工厂开展了频射识别跟踪技术的全球试点。 在未来,数字化工厂将能够在客户需求不足的生产期间规划各类维护和停工检修安排,实现利润率的最优化;实现工厂和整个企业生态体系内部的全面互联,以及对信息的智能化使用,将成为企业保持竞争力不可或缺的选项。 人工智能和数据分析是数字化工厂的推动力,智慧工厂企业已经采用了智能化算法来做出更合理的运营决策。

企业信息化,尤其是中小企业的信息化特值得关注!

大企业尤其是央企,军企,民企大企业无论是大数据,云计算,A1,揽够了无数搞信息应用,硬件,软件制造,信息安全的人才,也有足够的资金维护,发展信息化在企业产品开发应用。 使得大数据……等高 科技 信息应用得到了普遍发展!实现了信息应用大跨跃。

中,小企业只是在企业管理,机械,机床的数控化,产品销售信息化略有进展,互联网十也有开展,只是初级AⅠ的应用,又留不住人才,厂内信息化与 社会 联网,操作性差,网络安全,等问题和困难!

因此迫切需要信息化专家的指导,以及信息化人才的引进!这些在机械制造业的中小企业表现比较突出!

愿中小企业在数字化,信息化的发展中有所进步,有所飞跃!

“互联网+”时代是机遇与挑战并存的时代,企业信息化架构更加开放多元化,传统企业转型,需要强大的Pass平台进行复杂业务的支撑。 浪潮GSP+企业互联网开放平台面向企业信息中心、ISV、合作伙伴,可帮助企业实现业务的敏捷性、全面的互联、应用的智能化,加速企业数字化转型进程,构建丰富的企业应用生态。

那该如何以数字力量驱动产业升级呢?首先得明确数字化转型的方向。

以装备行业为例,数字化转型涵盖四个方向:

01核心业务数字化管理

鼎捷软件核心业务数字化管理贯穿销售、计划、供应链、生产、安装调试到售后服务等各个关节,聚焦经营目标,建构因果关系,快速定位异常;同时以指标树支持企业的管理升级,针对经营管理的数字化管理需求,打造经营管理战情中心,做到 “上线有数、管理有据” ;整合议题管理机制,洞察管理数据以提升经营绩效,形成企业 全流程、全价值链、全生命周期的数字化管理 ,让数据形成流动,解决经营管理中的不确定性问题。

02 打造IT与OT融合的数字工厂

IT与OT的深度融合已是大势所趋,鼎捷软件迈出 数字工厂IT与OT创新融合的应用实践 步伐,为企业提供数字化、智能化的行业应用方案,结合5G、IOT、云计算等新技术,为企业数字工厂赋能。 通过智能物流提高仓储物流效率、以议题来展开构筑车间层指标树,一举解决厂内生产进度难掌握、准时完工率低、工艺变更频繁、质量管理与成本核算难等发展瓶颈,让 生产过程透明化、实时掌控 ,实现全面数字化运营。

03 服务化转型

当前企业服务化转型主要面临三大方向:其一,服务提供的利润远超销售产品和配件带来的利润;其二,客户需要企业提供更多个性化的增值服务;其三,企业需要通过服务化摆脱低价竞争,提升核心竞争力。

04从智能设备到智能柔性设备

随着大规模定制化,消费者和终端市场需求灵活多变,设备必然 向智能柔性化发展 。 在此过程中,鼎捷软件打造工业机理应用场景,打通设备及工厂各个关键部件,真实落地装备智能化与产线柔性化,实现 软硬件融合 。

2021中国“智造”数字化转型峰会

直播短视频信息服务

①.工厂建立直播短视频平台,包含产品展示,企业介绍,文件管理,产品销售,企业招商。

②.工厂与市场开发商建立技术服务平台,包含知识产权认证,产品安装,产品售后维修,物联网信息方案。

有益效果

各种知识产权得到保护,知识产权应用(包含音乐,电影,产品图像物联网共享),产品安装,售后维修服务更加容易。

与时俱进、同频同步发展。 把企业信息化放在前导的位置,前瞻性引领技术革新、各项创新的发展方向。

以数据生产力作为主导的时代,可谓数字经济时代。

数字经济时代下的劳动者,由原本的产业工人,变为了智力劳动者,越来越多的人成为了知识创造者。 劳动工具则是智能化的工具,也就是指具有对信息采集、传输、处理、执行能力的工具。

4月8日,浪潮全球发布全新M6服务器,支持英特尔第三代至强 可扩展处理器。 浪潮全新M6服务器针对智慧时代需求设计,包括面向云计算、大数据、人工智能等应用场景的16款产品,提供业界最为丰富的场景产品阵列,为全球用户的数字化转型提供更加强大的算力支撑。

目前,浪潮M6服务器完成了和VMware最新vSphere版本的适配,能更好地帮助用户从传统应用过渡到现代容器云以及AI场景,无缝迁移至混合云,实现数字化转型。 浪潮作为全球领先的算力基础设施提供商,多年来始终坚持智慧计算战略,在数据中心基础架构领域具有30多年的经验和技术积累。 随着M6新一代服务器发布,浪潮将进一步加速企业智慧化转型,推动智慧计算的发展。

数字化经济时代,新技术与新模式层出不穷,未来会怎么发展?基于最近比较热门的话题,以下是我对数字化经济发展的一些思考。

随着新技术的不断成熟,AR、VR、人工智能等逐渐被应用到各类行业当中,所有行业都受到了数字化的冲击,区别只在于影响的时间和程度。

但是面对时代浪潮不可逆的挑战,企业想要走的更长远,我们必须对数字化、对自身的未来发展去做思考。

一、数字化经济的新趋势

1、产业跨界业务

跨界业务早已经不是新鲜事了,从碧桂园的机器人、网易养猪、农夫山泉种橙子、阿里巴巴想改造制造业、拼多多想改造农业等等......,各行业巨头纷纷布局多元化业务,寻求新引擎。

从互联网公司养猪、房地产研发机器人,这些企业不断打破边界触达其他领域,究其原因,就在于我们不能以一家纯互联网公司的视角去看他们。

2、平台高度垄断+品牌跨界合作

数字经济的蓬勃发展,让已经崛起的流量平台成为应用最广、影响最大的经济形态。 超级平台崛起的过程中,不仅只是在一些领域获得“一枝独秀”的市场地位,垄断也逐渐变成了常态。

借着互联网的强劲势头和私家车主的力量,滴滴成功杀出一条血路,滴滴的线上预约模式撼动了全中国的出租车行业,成为中国 科技 行业的超级独角兽公司、全球第一大出行平台,目前,滴滴出行宣布10月国内月活用户突破4亿,且在持续增长中。

行业垄断走向平台垄断,小区域垄断走向大区域垄断的趋势,导致平台竞争越来越白热化、用户分层越来越精细化之后,单个用户的获取成本和服务成本也变得更高。 所以为了节约流量成本,品牌之间就开始“搞事情”,于是越来越多品牌开始跨界合作。

比如周大福与娃哈哈、 《人民日报》与李宁等等。 最初都只是品牌和IP之间的经典联名。 后来变成了不相干品牌之间的跨界联名。 其实企业做这些最终都只是希望能够拓宽品牌曝光渠道,吸引消费者注意。 借助联名推出各类活动,进一步将产品信息露出在其他圈层人群中,提高品牌受关注度,为产品销售引流。

如今数字化经济的浪潮已经袭向各个行业,这股浪潮推动着每个人、企业甚至是政府都在前进。

3、产品进化+广告进化

薇娅2019年,双十一期间引导成交额超20亿。 单天直播引导成交额最高超10亿。 这是什么概念? 中国公司上市有个财务要求:发行前3年,累计净经营性现金流超过5000万或累计营业收入超过3亿元。 而薇娅一天的带货记录以及超过了一家上市公司。 仅2019年全年薇娅带货成交额合计300亿。

KOL直播为传统品牌与供应链企业打造营销新模式,进一步驱动了商业生态的升级,将销售环节朝着不同的方向延伸,此时决定某些产品归途的是KOL,而不再是企业。

广告的进化,更多的是利用内容营销制造爆点。 与传统的广告投放方式相比,互联网平台的广告完全是另一种态势。

4、创始人的改变

企业创始人的个人标签也越来越重要,现在很多新品牌绝大部分都是与个人IP、人设挂钩的。 可以说创始人的个性标签重要性不会比现在的明星标签要低。

二、消费者变懒

1、不做饭的吃货

90、00后逐渐成为消费主力,能看出几个明显的消费特征:

①、越来越宅

②、越来越懒

③、忙于工作没有时间 比如做饭,不是不会做饭,就是不想做饭,或者是太忙了压根没时间。 所以最好的办法则是叫外卖,最方便快捷。

最能看到一个明显的地方就是微信支付比支付宝更晚推出支付功能。 但是微信支付仅用一到两年的时间就打败了支付宝。 因为人们懒,大部分时间我们都在使用微信,但是如果用支付宝支付的话,需要更换界面,多几个步骤,但是就是几秒的时间,你都懒得不想做。

2、不去菜市场的大妈

疫情的出现,让原本一个“小小的”社区团购变成了现在的巨头大战。 为什么?因为生鲜蔬菜是家庭最多频次快消品的东西,更是老百姓的日常生活必不可少的元素。

社区团购可以当日下单之后,次日便能迅速送到客户手里。 这种便利,更加方便了这些“懒人”。

加之今年的疫情,更加加剧了这一模式的快速发展,一时间,美团、滴滴、拼多多、京东…大小互联网巨头亲自下场厮杀,上演全明星版本社区团购大乱斗。 不止互联网大佬们满血参战,资本也跟着疯狂。 短短数月,已经有近百亿资金进来分食这个万亿市场。

来个总结:

1、不破不立

一家企业想要获得进步,就必须有不破不立的思维,要有勇气打破旧制度和体系,才能引进新的思维和方式。

企业的发展与勇于改变、颠覆思维,有着密不可分的关系。 勇于打破才能赢得机遇拥有更多的机遇。

不能原地踏步,如今的时代,变化才是发展的主流,顺应时代和市场的发展浪潮,拥抱变化,接受变化,学习变化。

2、即刻行动

怎样在竞争充分和剧烈的市场迅速做大?现在是一个互联网精细化运营时代。 要去做一个细分的市场,做一个品类的开创者是很重要的。 基本上很多行业,我们记住的往往都是该行业的NO.1。 但是这些都是这个品类的先行者甚至是开创者。

互联网时代,传播成本变低,做一个先行者的优势就非常大。 从大处着眼、从小处着手,瞄准一个品类动手去做。 一定要做差异化内容,突破传统的思维和方法,敢于尝试新方法。

区块链联邦学习是什么?

为什么说区块链融合隐私计算是必然趋势?

从更大的版图视角来看,要构建全面的隐私保护和治理体系,不仅需要融合区块链、人工智能、大数据、隐私计算等多种技术,还需要结合法律法规、监管治理等诸多策略。

在数字化社会中,大家对于数据生产要素有着更为强烈的需求,无论是用户服务、业务营销都需要使用大量的数据,尤其是在分布式协作的业务模式中,各方都希望数据能顺畅地流通,并合理地体现数据价值。 但与之相悖的是,数据孤岛仍然存在,数据的粗放式使用仍待解决。

与此同时,合法合规成为大势所趋。 不论是在国内还是国际上,与个人信息保护、数据安全相关的法律法规一一出台,都对个人信息保护和数据安全等方面提出了更为严格的要求。 这意味着,要确保数据的安全,也要尊重个人的隐私权益;在数据全生命周期上,要求实现全面规范,达成合规地流通。

以用户为中心,在安全隐私前提下交换数据,并提供优质合规的服务,是数字化社会建设的趋势,需要在技术、业务模式、治理体系上做出更多的创新。 在分布式系统里引入隐私计算、发展合规的数据交易所等举措,都体现出这种创新精神。

在隐私计算领域,区块链、联邦学习和安全多方计算已然成为三大关键核心技术,而且这三大技术之间互有侧重,也有许多重合和联系。

其中,从区块链的角度出发,我们可以看到,一方面,区块链上的数据需要采用隐私算法来保护;另一方面,区块链也可以成为隐私计算协作里的底座和枢纽:采用区块链技术去记录、追溯多方协作中的数据集、算法模型、计算过程,并对最终结果进行评估和共识,持续优化协作效率。

此前几年,我们在区块链领域里探索应用落地时,常常是用区块链为业务场景构建“分布式账本”。 合规的应用都会对用户和商户进行KYC(KnowYourClient),其中也存在不少待通过隐私计算等创新解法来解答的问题。

例如,身份信息是否可以向全联盟链公布?在交易时,交易里的金额、相关方是否明文公开?每个人拥有的资产,是否可以被随意查询?人们的业务行为,是否会在未授权的情况下被滥用?

例如,在消费场景的积分卡券业务中,商家和商家之间通常不希望过多地暴露自己的经营状况,比如有多少用户开卡、充值,以及每天的流水等;个人用户也不希望自己的消费行为被公开审视。

于是,在隐私问题尚未能彻底解决之前,我们通常采用的办法是,引入核心权威机构参与共识和维护全账本,而其他参与者则分层分片,以不同权限的角色参与。 但这样,在一定程度上增加了系统的复杂性,影响了用户体验,同时,给区块链应用的规模化和普及化带来了挑战。

目前,区块链也普遍用于政务领域,比如在智慧城市管理以及各种民生应用中,为大家提供“一网通办”的良好体验,这就需要多领域、多地域、多部门的通力协作。 我们可以看到,政务应用覆盖面广,角色众多,数据存在多级别的敏感性和重要性。

区块链可以作为分布式协作的底座,通过数据目录、数据湖等方式,构建数据流转的枢纽,同时引入隐私计算和全面的治理规则,界定数据的边界,使数据在“不出库”的同时,依旧可以实现身份认证、隐匿查询、模型构建等能力。

从更大的版图视角来看,要构建全面的隐私保护和治理体系,不仅需要融合区块链、人工智能、大数据、隐私计算等多种技术,还需要结合法律法规、监管治理等诸多策略。

区块链隐私保护的场景丰富、角色众多,流程多样、数据立体,我们可以用“双循环”机制做进一步分析。

首先,我们从用户端出发,尊重用户对数据的知情权和控制权,把重要的数据交给用户管理。

比如,验证身份的“四要素”中,用户的身份凭据和联系方式通常来自政府和运营商这些权威机构,当用户和某一个业务场景产生联系时,他们并不需要提供全部的明文信息,只需要选择性披露一些可验证的凭据,用以代替明文。

基于分布式验证机制即可实现多场景的验身,证明自己的合法身份,此时业务提供方即使未获得更多明文数据,但也不能拒绝服务。 这就从根源上降低乃至杜绝了用户关键隐私的泄露风险。

其次,在业务方,依旧可以采用诸如联邦学习、安全多方计算等技术,对用户已经授权的、合规采集的业务数据进行处理。

在用户知情同意的前提下,在B端实现与合作伙伴之间的协同计算,数据不出库,隐私不泄露,但实现诸如风控、营销、广告等对业务运营有重要价值的事务。 最终实现业务效果的提升,在给业务方带来效益的同时,也为用户提供更优质的服务,或者权益上的回报。 其整个价值体系是闭环的,合规的,可持续的。

例如物联网和区块链,在采集端,就需要给设备分配身份和标识,同时算法上要做到去标识,防泄露;在用户端,不但要提供个性化的服务,还要做到防止不必要的画像,在做到可验证用户身份和资质的同时,又不能无端地追踪用户行为轨迹;最终,在提供优质服务、安全存储用户数据的时候,又要尊重用户的意愿,包括注销退出的要求。

如此的“双循环体系”,可能不止是在技术上要求设备、APP、后台服务进行迭代的重构,同时其商业模式、运营治理观念等层面可能也会产生许多革新。 整个链条会非常的长,需要做的工作也非常多,覆盖芯片、硬件、网络、软件、云平台等广袤的产业链。

目前来看,并没有哪一个“包打天下”的单一技术,可以满足“全链路”、“双循环”的要求。 那么我们不妨把场景拆细一点,列举得全面一些,组合一些技术和方案,先解决某个场景里的痛点问题。

事实上,我们在和众多产业应用开发者交流时,他们更期望聚焦于具体的、迫在眉睫的问题,得到有针对性、可着手实施的解决方案,比如转账时隐匿金额、排名时不透露分数、投票时不泄露身份、KYC流程时不泄露视频等等。

特定场景下的问题常常可以基于隐私计算的某一个算法或一些算法的组合,针对性的去应对。 我们可以日拱一卒,解决一个又一个的场景化问题,对之前可能有纰漏的事情亡羊补牢,对可预见的刚性需求引入新技术新思路,创新性地去实现。 这样就逐步把数据安全的篱笆一点点扎起来,最终筑就数据安全的长城。

分布式协作中,许多场景是跨机构的、跨网络的,无论是区块链还是隐私计算,都会遇到要和其他合作方、其他平台互通的要求。 我们看到信通院的相关工作组正在讨论多项互联互通规范,核心框架是要做到“节点互通”、“资源互通”、“算法互通”。

节点互通要求网络和协议等基础要素能互通。 资源互通强调的是对资源的发布存储、寻址使用、治理审计(含删除数据、下线服务等),在这个层面上,大家都实现相对一致的视图,提供通用的接口。 算法的互通则是非常细致和场景化的,每一种算法都有自己的特点,其密码学基础、运算规则、协作流程都会不一样,反过来对资源的管理资质和节点网络的拓扑,都会提出更多的要求。

在互通基础上还有“自洽性”、“安全性”、“正确性”等要求,而且随着领域的发展,不断增加更多功能的“扩展性”也非常重要。 之前,可能大家是在埋头苦干,积累技术和经验,以后在落地时,则需要更注重接口和规范,开放心态,大家一起沟通共建,通过开源开放的方式寻求共识和共赢。

总结一下,关于隐私计算发展的几个思考:

第三,实现标准化和普及化,以推动新技术和新理念的规模化落地。 比如相关的行业标准、评测体系,这对帮助从业者理清发展道路、达成行业要求大有裨益。

区块链发展这么多年,除了技术本身,其实最难的是“怎么解释清楚啥是区块链”。 希望在科普推广方面,方兴未艾的隐私计算能有更多的新思路,实现更好的效果。

回顾区块链和隐私计算的热潮,我们看到产业和社会在呼唤数据安全和隐私保护,行业也已经有了不少可用的研究成果,得到了一定的认可。 展望可见的未来,我们将更加开放、务实,聚焦用户和场景,探索规范的、规模化的、可持续的应用之路。

同盾的知识联邦和其他厂提的联邦学习有哪些显著不同?

同盾的知识联邦是一个统一的安全多方应用框架,它支持安全多方查询、安全多方计算、安全多方学习、安全多方推理等多种联邦应用。 知识联邦在借鉴一些相关技术的同时,也具备一定的独创性,尤其是在认知层和知识层联邦都是自主创新的。 知识联邦与其它技术领域,如联邦学习、区块链、隐私计算、安全多方计算等,都有着紧密的关系。

五大赛道、八位专家,银行局中人眼里的AI江湖

谁说大象不能跳舞?

2020于全体银行而言,是一场无预告的终极考验,一轮最直观的金融科技对决。 疫情让网点流量骤降到接近于0,全方位挑战银行线上服务水平,检验那些连年增加的科技投入,有多少真正变作数字化、智能化的一点一滴。

踏进2021,银行们迎来周密复盘、整装待发的最好时间节点。

在过去这一年,银行更努力地摆脱大象转身的刻板印象,告别以往被各路创新推着走的窘况,试图在金融科技和数字新基建的浪潮里承担更主动、开放的角色,以轻快敏捷的步伐持续向前。

没有一家银行不想拥抱AI,没有人愿意错过数智化转型的未来。 在梳理数十家银行AI全布局,以及「银行业AI生态云峰会」多位嘉宾的分享过程中,我们逐渐发现银行业AI的那些挑战和困境,那些艰险之处同样是机遇所在。

数据安全与隐私保护

银行业AI,首先被AI本身正面临的数据困境,和日渐收紧的数据监管尺度拦住。

在技术维度不断向前奋进的同时,银行必然要思考的一个议题是:业务创新与隐私保护如何兼顾?

雷锋网AI金融评论主办的《联邦学习系列公开课》曾对这一问题展开过系统深入的探讨。 第一节课上,微众银行首席人工智能官杨强就直接点明:“人工智能的力量来自于大数据,但在实际运用过程中碰到更多的都是小数据。 ”

平安科技副总工程师王健宗也在课上指出,“传统的AI技术必须从海量的数据中学习或者挖掘一些相关的特征,利用数学理论,去拟合一个数学模型,找到输入和输出的对应关系,比如深度学习中训练网络的权重和偏置,模型效果与数据量级、质量、以及数据的真实性等有着密切的关系。”

一个典型例子就是银行信贷风控:现在大部分AI应用都由数据驱动,信贷风控更需要大量数据训练,但大额贷款风控的案例又非常少。 “要是来做深度学习模型,只用少量这种大额贷款的样本远远不够。 ”杨强解释。

小数据需要“聚沙成塔”,同时又面临侵犯隐私的可能。 为此,网络安全与数据合规领域的立法进入了快车道,滥用数据和爬虫也受到过严厉整治。

虽然目前《数据安全法》还只是处于草案的状态,但是草案明确提出要关注数据本身的使用,需要在保护公民组织、相关权益的前提下,促进数据为关键要素的经济发展。

数据被称作是新时代的油田,但银行该怎样通过AI摸索出更高效、更合规的开采工具?

在「银行业AI生态云峰会」第一场演讲中,微众银行区块链安全科学家严强博士就对银行必备的数据安全与隐私保护思维,进行了深入讨论。他指出:

在数字经济时代下,银行业AI发展必须要尊重“数据孤岛”作为数据产业的原生态,隐私保护技术则是打破数据价值融合“零和博弈”的关键,需要打通隐私数据协同生产的“双循环”。

而区块链是承载数据信任和价值的最佳技术,对于隐私计算和AI应用中常见的数据品质等难题,都可以通过区块链进行互补或提升效果。

联邦学习、TEE可信计算、安全多方计算等多个AI技术路线也正尝试落地于银行的核心业务场景。

AI金融评论了解到,除了微众银行,江苏银行2020年也已开展联邦学习方向的探索,他们与腾讯安全团队合作,基于联邦学习技术对智能化信用卡经营进行联合开发和方案部署,在联邦学习技术支持下进行金融风控模型训练。

银行数据库

以“数据”为线,银行前中后台的升级轨迹清晰可见。

如果说前些年的银行科技,讨论度更集中在前台智能化应用,那么如今中后台建设开始更多地来到聚光灯下,讨论它们为银行数字化转型呈现的价值和意义。

这当中的一个重要模块,就是银行数据库的改造升级。

我们曾经报道,Oracle自进入中国市场以来,在银行数据库市场,一直具有压倒性优势,也是许多银行的采购首选。

由于长期使用Oracle,不少银行形成较严重的路径依赖。 平安银行分布式数据库技术负责人李中原也曾向AI金融评论表示,系统迁移和重新建设需要大量成本,从单机变为多机群体,故障发生的故障发生的概率和维护成本都会加大,对整体系统运维将是巨大挑战。 (详见《银行业“求变”之日,国产数据库“破局”之时》)

而云计算的出现,让Oracle在数据库市场接近垄断的地位有所动摇,各大互联网云厂商杀入战场。

腾讯云副总裁李纲就表示,云化数据库胜在成本低、易扩容两大特点,任意一台X86的PC服务器就可以运行,理论上也有着无限的横向扩展能力,这都是Oracle等传统数据库难以企及的优点。

中国数千家银行由此获得更多选择余地,开始从集中式数据库迁移到分布式数据库,一场事关“大机下移”的漫长征途就此展开。

这场变革已有先行者,例如张家港行在2019年就将其核心业务系统放在了腾讯云TDSQL数据库上,传统银行首次为核心系统选用国产分布式数据库;2020年,平安银行信用卡的核心系统也完成切换投产,新核心系统同样采用了国产数据库。

以平安银行为例,其体量之大,意味着应用改造更具挑战性。 张文解释道,为了配合此次改造,应用引入了微服务架构对应用进行了拆分和解耦。 对账号的分布进行了单元化划分,以DSU为一个逻辑单元,单个DSU包含200万个客户信息,单个DSU同时处理联机和账务两种业务。

但国产分布式数据库也同样还在成长当中,张文也指出了目前金融级分布式数据库面临一系列挑战点,除了有可伸缩、可扩展的能力,更要解决高可用性、数据强一致性,同时探索更具性价比的性能成本,以及为金融机构打造更易上手的、更产品化的成熟解决方案。

中台建设

“中台建设”这个热门关键词,不再是互联网公司的专属。 银行也不例外,甚至更需要中台。

银行这样的大型机构,架构极其复杂,还有跨部门多团队的协作,海量数据日积月累之下如同年久失修的危楼,更需要及时、持续的治理。

在看来,银行拥有大量的数据、技术和人才,资源却往往“各行其是”,部门之间没有配合意识、独立造烟囱;技术流于表面,无法链接、深入,这造成了银行资源的大量浪费。

中台的体系化建设和顺利运转,才能将这庞大体系中的“死结”一一梳开。

建设银行监事长王永庆就曾指出:中台建设是商业银行数字化经营转型的关键环节,认为商业银行数字化转型的必然归宿是生态化、场景化。

尽管商业银行在多年经营过程中沉淀了一定的竞争优势,形成了各具特色的内部生态系统,但目前仍是封闭的、高冷的,还无法满足数字经济对开放式生态化经营可交互、高黏性、有体感、无边界的要求。

因此,建行也已在数据中台先行一步,其落地上概括为5U(U是统一的意思),包括统一的模型管理、统一的数据服务、统一的数据视图,统一的数据规范以及统一的数据管理。

为求轻松支撑亿级用户,实现高时效、高并发场景化经营,招商银行近两年也在中台和技术生态体系的建设上持续发力。 去年年底发布的招商银行App9.0,迭代需求点超过1800项,“10+N”数字化中台建设就占据了相当的比重。

如何构建金融机构需要的数据中台?

在「银行业AI生态云峰会」上,360数科首席科学家张家兴就用“三通三快”概括了数据中台的标准:

金融机构面对着海量用户、复杂业务,一个优秀的数据中台,必须是达到多业务打通,内外数据互通和用户关系连通,同时还要做到数据的实时处理快、使用快、需求响应快。

他进一步强调,数据与AI融合得非常紧密,如果数据中台和AI中台各自建设,两者之间将不可避免地存在割裂的现象。

基于此,360数科也推出了自己的数据AI融合中台,将最上层数据平台,到中间数据服务支撑的平台服务,再到整个数据资产的管理,到最下面整个数据技术架构的设计都进行调整,并且将自身沉淀的AI能力嵌入其中。

张家兴也在云峰会的演讲上透露,360数科研发了一项联邦学习技术——分割式神经网络,通过神经网络在高维空间,Embedding不可逆的特性,使得不同参与的数据合作方只需要传递Embedding向量,见不到原始数据,但最终可以使模型产生目标效果。

银行信贷智能风控

而在过去一年里,银行信贷风险管理,仍然是最引人关注的方向之一。

关注度一方面来自于,受疫情影响而剧增的贷款逾期和坏账风险,如何借助技术手段“端稳这碗水”,把握好信贷支持尺度,成为银行、消金公司和风控技术服务商们的开年大考。(详见《信贷战“疫”:一场给风控的开年大考》)

而另一方面,2020年下半年起,针对金融科技或是互联网金融的监管“红线”逐渐清晰。 例如《商业银行互联网贷款管理暂行办法》,其中就明确提出了对商业银行的风险管控要求,和对合作机构的管理规范。

尽管结合AI、大数据的智能风控在银行科技应用中不再新鲜,但这并不意味着智能风控已经足够成熟——数据资源壁垒、自有数据累积、数据特征提炼、算法模型提升,被认为是大数据风控目前所面临四大困境。

某商业银行负责人就曾表示,在模型建设和模型应用过程中普遍存在数据质量问题,包括外部数据的造假(黑产欺诈)和内部数据的滥用等,在模型迭代方面,很多银行只追求迭代的速度和频次,而忽略了最终效果。

前网络金融CRO、融慧金科CEO王劲进一步指出,数据规范和治理体系不健全,数据质量差且缺失率高,技术能力不足,复合型科技人才匮乏等因素都是银行等金融机构无法做好模型的重要原因。

王劲曾在有着“风控黄埔军校”之称的美国运通工作17年,负责过全球各国各类产品相关的700余个模型提供政策制度和独立监控。 在云峰会上,他也结合自身二十余年风控经验,剖析了金融风险管理中的那些理念误区。

“很多人并不是特别理解,风险管理永远是一个寻找平衡点的科学。”王劲认为,风险管理平衡有着这样的核心三问:

他也解析了银行等持牌金融机构做好风险管理平衡的核心要素,谈到风险管理最重要的就是对数据的把控,“金融公司成立之初就要思考数据的生命周期。 首先要从对业务产品和客户的选择当中,决定需要什么样的数据。 ”

数据战略是一个相对长期的落地过程,机构首先要立下数据选择的原则和条件:要考虑的不只是数据的合规性、稳定性和覆盖率,更要考虑数据的新鲜度、时效性和时间跨度。

从模型建设的角度出发,王劲指出,一个卓越的风控模型应当具备辨别力、精准度、稳定性、复杂度和可解释性五大要素,“原材料”数据、模型架构和算法的选择,衍生变量的出现,对模型的监控和迭代,以及对y的定义和样本的筛选,无一不影响模型的“锻造”。

在他看来,银行等金融机构如果能在身份识别和控制、数据安全管理、风险模型管理,和自动化监控体系方面,做到高效完善,将会是非常理想的一种状态。

RPA与内部流程优化

还有一个关键词,在各家银行年报中出现频率越来越高,那就是RPA(机器人流程自动化)。 此前AI金融评论也曾举办《RPA+AI系列公开课》,邀请到五位头部RPA厂商高管分享RPA与金融碰撞出的火花。

RPA的定义,很容易联想到2012年左右的“流程银行”转型潮。 当时的流程银行,意为通过重新构造银行的业务流程、组织流程、管理流程以及文化理念,改造传统的银行模式,形成以流程为核心的全新银行经营管理体系。

如今银行的转型之战,全方位升级为“数字化转型”,内部流程的优化改造在AI和机器人技术的加持下持续推进,RPA也迅速成为银行数字化转型不可缺席的一把“武器”。

达观数据联合创始人纪传俊在「银行业AI生态云峰会」上指出,RPA+AI为银行带来的价值,最明显的就是减少人工作业、降低人工失误,提升业务流程效率,同时也提高风险的预警和监控能力。

AI金融评论注意到,已有多家国有大行将RPA投产到实际业务中。

以工商银行为例,RPA在工行的应用覆盖了前台操作、中台流转和后台支撑等多个业务场景,在同业率先投产企业级机器人流程自动化(RPA)平台并推广应用,全行累计46家总分行机构运用RPA落地实施120个场景。

建设银行同样也引入了RPA,建立国内首个企业级RPA管理运营平台,敏捷研发业务应用场景100个,实现人工环节自动化、风险环节机控化。

农业银行方面则透露,农行目前还处于技术平台建设阶段,之后将以信用卡业务、财务业务等为试点落地RPA需求。 其实施策略,是建设全行统一的RPA技术平台,面向总分行各部门输出RPA服务。

中国银行在2017年底,旗下公司中银国际就已有RPA的概念验证,团队成功投产20个机器人,分别在不同岗位执行超过30个涉及不同业务流程的自动化处理工作,也与RPA厂商达观数据展开了合作。

纪传俊也在云峰会上分享了目前AI+RPA在银行各大典型场景的落地:

例如智慧信贷,面向的是整个银行最核心的流程——信贷流程,分为贷前、贷中、贷后三大阶段。 其中涉及数据查询、数据处理、财务报表、银行流水等专业环节,需要完成基础信息的录入、尽调报告的审核,而这些环节中的大量重复劳动,可以基于AI、OCR、NLP等技术自动化完成。

区块链是什么意思?

区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。 所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。

1、狭义来讲,区块链是一种按照时间顺序将数据区块以顺序相连的方式组合成的一种链式数据结构,并以密码学方式保证的不可篡改和不可伪造的分布式账本。

2、广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式。

扩展资料:

1、2008年由中本聪第一次提出了区块链的概念,在随后的几年中,成为了电子货币比特币的核心组成部分:作为所有交易的公共账簿。

2、到2014年,“区块链2.0”成为一个关于去中心化区块链数据库的术语。 对这个第二代可编程区块链,经济学家们认为它的成就是“它是一种编程语言,可以允许用户写出更精密和智能的协议,因此,当利润达到一定程度的时候,就能够从完成的货运订单或者共享证书的分红中获得收益”。

3、在2016年,俄罗斯联邦中央证券所(NSD)宣布了一个基于区块链技术的试点项目。 许多在音乐产业中具有监管权的机构开始利用区块链技术建立测试模型,用来征收版税和世界范围内的版权管理。

4、区块链的时间戳服务和存在证明,第一个区块链产生的时间和当时正发生的事件被永久性的保留了下来。

5、比特币公司BTCC于2015年推出了一项服务“千年之链”即区块链刻字服务,就是采用的以上原理。 用户可以将通过这项服务将文字刻在区块链上,永久保存。

参考资料:网络百科_区块链


相关标签: 软件故障的社会和经济影响更大的视角软件故障的故障现象

本文地址:http://www.hyyidc.com/article/37077.html

上一篇:网络安全盾牌安全配置指南网络安全盾牌图片...
下一篇:公众号推广内容创制作业流程和创意灵感公众...

温馨提示

做上本站友情链接,在您站上点击一次,即可自动收录并自动排在本站第一位!
<a href="http://www.hyyidc.com/" target="_blank">好有缘导航网</a>