好有缘导航网

公有云的演变:从概念到变革性技术 (公有云的含义)


文章编号:35334 / 分类:行业资讯 / 更新时间:2024-12-12 21:02:20 / 浏览:

公有云的含义

公有云的演变从概念到变革性技术公有云的含

公有云是一种云计算模型,其中计算资源(如服务器、存储和网络)以按需自助服务的方式向广泛的公众提供。这些资源由云服务提供商(CSP)拥有和管理,用户可以通过互联网访问它们。

公有云的演变

早期阶段(2000 年代初期)

  • 云计算的概念首次提出,但仍然是一个抽象概念。
  • 亚马逊于 2006 年推出 Amazon EC2,这是第一个公有云平台。

采用早期阶段(2000 年代后期)

  • 越来越多的企业开始探索公有云的好处。
  • 谷歌云平台和 Microsoft Azure 等其他主要公有云提供商进入市场。

快速增长期(2010 年代)

  • 公有云成为企业 IT 战略中不可或缺的一部分。
  • 公有云提供商提供了广泛的服务,包括基础设施即服务 (IaaS)、平台即服务 (PaaS) 和软件即服务 (SaaS)。

大数据发展的三个必要条件

大数据发展的三个必要条件_数据分析师考试

近年来,关于大数据的讨论在技术、应用和模式等多个层面展开,已被认为代表着产业发展的方向。 但与互联网公司的诸多实践相比,被认为具有数据资源先天优势的电信运营商却走在了后面,即便放眼全球,电信运营商的大数据应用案例也是屈指可数。 移动宽带和固网宽带快速发展、OTT的强势崛起决定了电信运营商必须充分利用自身掌握的数据资源,另辟蹊径,从而实现网络价值的最大化。 因此,电信运营商应用大数据是必然的,而且市场前景十分广阔。

为了加快大数据的“落地”步伐,帮助业界各方特别是电信运营企业更好地了解大数据,认清大数据战略发展的重要性,分析发展道路上面临的难题和障碍,促进大数据产业链的成熟,推动大数据的应用推广。 从今天开始,《人民邮电》报特邀来自中兴通讯、电信研究院以及三大运营商等单位的专家,推出“掘金大数据”系列报道,以飨读者。

大数据概念的横空出世,有赖于短短几年出现的海量数据。 据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。 当然,海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”的特征,也就是Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值),大数据的定义才算完整,而最后一个Value(价值),恰恰是决定大数据未来走向的关键。

大数据发展的三个必要条件

大数据的发展需要三方面的必要条件:数据源、数据交易、数据产生价值的过程。 近年来,社交网络的兴起、物联网的发展和移动互联网的普及,微信、微博、智能手机、电商大行其道,诞生了大量有价值的数据源,比如位置、生活信息等数据,数据源的出现奠定了大数据发展的基础。 大数据时代到来的重要标志,则是大批专业级“数据买卖商”的出现,以及围绕数据交易形成的贯穿于收集、整理、分析、应用整个流程的产业链条。 大数据发展的核心,则是使用户从海量的非结构化数据和半结构化数据中获得新的价值,数据价值是带动数据交易的原动力。

IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,在这些互联网巨头的带动下,数据分析技术日渐成熟。 2013年6月,爱德华·斯诺登将“棱镜”计划公之于众,“棱镜门”事件一方面说明大数据技术已经成熟,另一方面也佐证了现在阻碍大数据发展的不是技术,而是数据交易和数据价值。

大数据技术的发展促进了云计算的落地,云计算的部署完成又反过来加大了市场对数据创造价值的期待。 大数据概念提出之后,市场终于看到了云计算的获利方向,云计算市场仿佛在一夜之间爆发,在过去一两年间几乎已经被国内大方案商、大集成商瓜分殆尽——各地的一级系统集成商与当地政府合作,建云数据中心,建智慧城市;各大行业的巨头们在搭建各自行业的混合云标准,搭建行业云平台;公有云也来了,各大IT巨头想尽办法申请中国的公有云牌照。 云计算从概念到落地用了5年时间,最终促成这一切的就是大数据,或者说是市场对数据价值的期待。 借助于国内智慧城市概念的大规模普及,云计算基础设施已基本准备就绪,一方面具备了大数据应用的硬件基础,另一方面迫于回收云计算投资的压力,市场急需应用部署,大数据恰如雪中送炭,被市场寄予厚望。

现在,一切的矛头都指向了“数据如何创造价值?”

56数据创造价值的基石6是数据整合和开放

大数据服务创业公司Connotate对800多名商业和IT主管进行了调查。 结果显示,60%受调查者称“目前就说这些大数据投资项目肯定能够带来良好回报尚为时过早”。 之所以如此,是由于当前大数据缺乏必需的开放性:数据掌握在不同的部门和企业手中,而这些部门和企业并不愿意分享数据。 大数据通过研究数据的相关性来发现客观规律,这依赖于数据的真实性和广泛性,数据如何做到共享和开放,这是当前大数据发展的软肋和需要解决的大问题。

2012年美国大选奥巴马因数据整合而受益。 在奥巴马的竞选团队中有一个神秘的数据挖掘团队,他们通过对海量数据进行挖掘帮助奥巴马筹集到10亿美元资金;他们通过数据挖掘使竞选广告投放效率提升了14%;他们通过制作摇摆州选民的详细模型,每晚实施6.6万次模拟选举,推算奥巴马在摇摆州的胜率,并以此来指导资源分配。 这个数据挖掘团队,对奥巴马成功连任功不可没。 奥巴马竞选团队相比罗姆尼竞选团队最有优势的地方就是对大数据的整合。 奥巴马的数据挖掘团队也意识到这个全世界共同的问题:数据分散在过多的数据库中。 因此,在前18个月,奥巴马竞选团队就创建了一个单一的庞大数据系统,可以将来自民意调查者、捐资者、现场工作人员、消费者数据库、社交媒体,以及“摇摆州”主要的民主党投票人的信息整合在一起。 这个整合后的巨大数据库不仅能告诉竞选团队如何发现选民并获得他们的注意,还帮助数据处理团队预测哪些类型的人有可能被某种特定的事情所说服。 正如竞选总指挥吉姆·梅西纳所说,在整个竞选活中,没有数据做支撑的假设很少存在。

2012年3月,美国奥巴马政府宣布投资2亿美元启动“大数据研究和发展计划”,将大数据研究上升为国家意志,对大数据的整合带来深远影响。 一个国家拥有数据的规模和运用数据的能力将成为综合国力的重要组成部分。 国内智慧城市的建设目标之一就是实现数据的集中共享。

数据创造价值需要合作共赢的商业模式

随着云计算、大数据技术和相关商业环境的不断成熟,越来越多的“软件开发者”正在利用跨行业的大数据平台,打造创新价值的大数据应用,而且这一门槛正在不断降低。 因为首先,数据拥有者乐于做这样的事情,他们能够以微乎其微的成本获取额外的收入,提高利润水平;其次,大数据设备厂商乐于做这样的事情,因为厂商需要应用来吸引消费者购买设备,发展合作共赢的伙伴关系势必比单纯销售设备要有利可图,一些具有远见的厂商已经开始通过提供资金、技术支持、入股等方式来扶持这些“软件开发者”;第三,行业细分市场的数据分析应用需求在不断加大,对于整个大数据产业链来说,创新型的行业数据应用开发者必将是未来整个大数据产业链中最为活跃的部分。

在必然到来的大数据时代,有三种企业将在“大数据产业链”中处于重要地位:掌握海量有效数据的企业,有着强大数据分析能力的企业,以及创新的“软件开发者”。 社交网络、移动互联网、信息化企业、电信运营商都是海量数据的制造者,Facebook公司手中掌握着8.5亿用户,淘宝注册用户超过3.7亿,腾讯的微信用户突破3亿,这些庞大用户群所提供的数据,正在等待时机释放出巨大的商业能量。 可以预测,在不久的将来,Facebook、腾讯、电信运营商等海量数据持有者要么自我发展成为数据分析提供商,要么与IBM、ZTE等企业密切对接成为上下游合作企业,大数据产业链将在某个爆发点到来之际,以令人惊讶的速度成长壮大。

警惕大数据的危害

大数据时代,传统的随机抽样被“所有数据的汇拢”所取代,人们的思维决断模式,已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此将更精确、更有预见性。 不过,由于大数据过于依靠数据的汇集,一旦数据本身有问题,就很可能出现“灾难性大数据”,即因为数据本身的问题,而导致错误的预测和决策。

大数据的理论是“在稻草堆里找一根针”,而如果“所有稻草看上去都挺像那根针”呢?过多但无法辨析真伪和价值的信息和过少的信息一样,对于需要作出瞬间判断、一旦判断出错就很可能造成严重后果的情况而言,同样是一种危害。 大数据理论是建立在“海量数据都是事实”的基础上,而如果数据提供者造假呢?这在大数据时代变得更有害,因为,人们无法控制数据提供者和搜集者本人的偏见与过滤。 拥有最完善数据库、最先接受“大数据”理念的华尔街投行和欧美大评级机构,却每每在重大问题上判断出错,这本身就揭示了“大数据”的局限性。

不仅如此,大数据时代造就了一个数据库无所不在的世界,数据监管部门面临前所未有的压力和责任:如何避免数据泄露对国家利益、公众利益、个人隐私造成伤害?如何避免信息不对等,对弱势群体的利益构成伤害?在有效控制风险之前,也许还是让大数据继续待在“笼子”里更好一些。

大数据的经济价值已经被人们所认可,大数据的技术也已经逐渐成熟,一旦完成数据的整合和监管,大数据爆发的时代即将到来。 我们现在要做的,就是选好自己的方向,为迎接大数据的到来,提前做好准备。

在IT项目建设中,如何保证数据库安全性?

#云原生背景#云计算是信息技术发展和服务模式创新的集中体现,是信息化发展的重要变革和必然趋势。 随着“新基建”加速布局,以及企业数字化转型的逐步深入,如何深化用云进一步提升云计算使用效能成为现阶段云计算发展的重点。 云原生以其高效稳定、快速响应的特点极大地释放了云计算效能,成为企业数字业务应用创新的原动力,云原生进入快速发展阶段,就像集装箱加速贸易全球化进程一样,云原生技术正在助力云计算普及和企业数字化转型。 云原生计算基金会(CNCF)对云原生的定义是:云原生技术有利于各组织在公有云、私有云和混合云等新型动态环境中,构建和运行可弹性扩展的应用。 云原生的代表技术包括容器、服务网格、微服务、不可变基础设施和声明式编程API。 #云安全时代市场发展#云安全几乎是伴随着云计算市场而发展起来的,云基础设施投资的快速增长,无疑为云安全发展提供土壤。 根据 IDC 数据,2020 年全球云安全支出占云 IT 支出比例仅为 1.1%,说明目前云安全支出远远不够,假设这一比例提升至 5%,那么2020 年全球云安全市场空间可达 53.2 亿美元,2023 年可达 108.9 亿美元。 海外云安全市场:技术创新与兼并整合活跃。 整体来看,海外云安全市场正处于快速发展阶段,技术创新活跃,兼并整合频繁。 一方面,云安全技术创新活跃,并呈现融合发展趋势。 例如,综合型安全公司 PaloAlto 的 Prisma 产品线将 CWPP、CSPM 和 CASB 三个云安全技术产品统一融合,提供综合解决方案及 SASE、容器安全、微隔离等一系列云上安全能力。 另一方面,新兴的云安全企业快速发展,同时,传统安全供应商也通过自研+兼并的方式加强云安全布局。 国内云安全市场:市场空间广阔,尚处于技术追随阶段。 市场规模上,根据中国信通院数据,2019 年我国云计算整体市场规模达 1334.5亿元,增速 38.6%。 预计 2020-2022 年仍将处于快速增长阶段,到 2023 年市场规模将超过 3754.2 亿元。 中性假设下,安全投入占云计算市场规模的 3%-5%,那么 2023 年中国云安全市场规模有望达到 112.6 亿-187.7 亿元。 技术发展上,中国在云计算的发展阶段和云原生技术的程度上与海外市场还有一定差距。 国内 CWPP 技术应用较为广泛,对于 CASB、CSPM 一些新兴的云安全技术应用较少。 但随着国内公有云市场的加速发展,云原生技术的应用越来越广泛,我们认为CASB、SCPM、SASE 等新兴技术在国内的应用也将越来越广泛。 #云上安全呈原生化发展趋势#云原生技术逐渐成为云计算市场新趋势,所带来的安全问题更为复杂。 以容器、服务网格、微服务等为代表的云原生技术,正在影响各行各业的 IT 基础设施、平台和应用系统,也在渗透到如 IT/OT 融合的工业互联网、IT/CT 融合的 5G、边缘计算等新型基础设施中。 随着云原生越来越多的落地应用,其相关的安全风险与威胁也不断的显现出来。 Docker/Kubernetes 等服务暴露问题、特斯拉 Kubernetes 集群挖矿事件、Docker Hub 中的容器镜像被“投毒”注入挖矿程序、微软 Azure 安全中心检测到大规模 Kubernetes 挖矿事件、Graboid 蠕虫挖矿传播事件等一系列针对云原生的安全攻击事件层出不穷。 从各种各样的安全风险中可以一窥云原生技术的安全态势,云原生环境仍然存在许多安全问题亟待解决。 在云原生技术的落地过程中,安全是必须要考虑的重要因素。 #云原生安全的定义#国内外各组织、企业对云原生安全理念的解释略有差异,结合我国产业现状与痛点,云原生与云计算安全相似,云原生安全也包含两层含义:“面向云原生环境的安全”和“具有云原生特征的安全”。 面向云原生环境的安全,其目标是防护云原生环境中的基础设施、编排系统和微服务的安全。 这类安全机制,不一定具备云原生的特性(比如容器化、可编排),它们可以是传统模式部署的,甚至是硬件设备,但其作用是保护日益普及的云原生环境。 具有云原生特征的安全,是指具有云原生的弹性敏捷、轻量级、可编排等特性的各类安全机制。 云原生是一种理念上的创新,通过容器化、资源编排和微服务重构了传统的开发运营体系,加速业务上线和变更的速度,因而,云原生系统的种种优良特性同样会给安全厂商带来很大的启发,重构安全产品、平台,改变其交付、更新模式。 #云原生安全理念构建#为缓解传统安全防护建设中存在的痛点,促进云计算成为更加安全可信的信息基础设施,助力云客户更加安全的使用云计算,云原生安全理念兴起,国内外第三方组织、服务商纷纷提出以原生为核心构建和发展云安全。 Gartner提倡以云原生思维建设云安全体系基于云原生思维,Gartner提出的云安全体系覆盖八方面。 其中,基础设施配置、身份和访问管理两部分由云服务商作为基础能力提供,其它六部分,包括持续的云安全态势管理,全方位的可视化、日志、审计和评估,工作负载安全,应用、PaaS 和 API 安全,扩展的数据保护,云威胁检测,客户需基于安全产品实现。 Forrester评估公有云平台原生安全能力Forrester认为公有云平台原生安全(Public cloud platform native security, PCPNS)应从三大类、37 个方面去衡量。 从已提供的产品和功能,以及未来战略规划可以看出,一是考察云服务商自身的安全能力和建设情况,如数据中心安全、内部人员等,二是云平台具备的基础安全功能,如帮助和文档、授权和认证等,三是为用户提供的原生安全产品,如容器安全、数据安全等。 安全狗以4项工作防护体系建设云原生安全(1)结合云原生技术的具体落地情况开展并落实最小权限、纵深防御工作,对于云原生环境中的各种组成部分,均可贯彻落实“安全左移”的原则,进行安全基线配置,防范于未然。 而对于微服务架构Web应用以及Serverless应用的防护而言,其重点是应用安全问题。 (2)围绕云原生应用的生命周期来进行DevSecOps建设,以当前的云原生环境的关键技术栈“K8S + Docker”举例进行分析。 应该在容器的全生命周期注重“配置安全”,在项目构建时注重“镜像安全”,在项目部署时注重“容器准入”,在容器的运行环境注重云计算的三要素“计算”“网络”以及“存储”等方面的安全问题。 (3)围绕攻击前、中、后的安全实施准则进行构建,可依据安全实施准则对攻击前、中、后这三个阶段开展检测与防御工作。 (4)改造并综合运用现有云安全技术,不应将“云原生安全”视为一个独立的命题,为云原生环境提供更多支持的主机安全、微隔离等技术可赋能于云原生安全。 #云原生安全新型风险#云原生架构的安全风险包含云原生基础设施自身的安全风险,以及上层应用云原生化改造后新增和扩大的安全风险。 云原生环境面临着严峻的安全风险问题。 攻击者可能利用的重要攻击面包括但不限于:容器安全、编排系统、软件供应链等。 下面对重要的攻击面安全风险问题进行梳理。 #云原生安全问题梳理#问题1:容器安全问题在云原生应用和服务平台的构建过程中,容器技术凭借高弹性、敏捷的特性,成为云原生应用场景下的重要技术支撑,因而容器安全也是云原生安全的重要基石。 (1)容器镜像不安全Sysdig的报告中提到,在用户的生产环境中,会将公开的镜像仓库作为软件源,如最大的容器镜像仓库Docker Hub。 一方面,很多开源软件会在Docker Hub上发布容器镜像。 另一方面,开发者通常会直接下载公开仓库中的容器镜像,或者基于这些基础镜像定制自己的镜像,整个过程非常方便、高效。 然而,Docker Hub上的镜像安全并不理想,有大量的官方镜像存在高危漏洞,如果使用了这些带高危漏洞的镜像,就会极大的增加容器和主机的入侵风险。 目前容器镜像的安全问题主要有以下三点:1.不安全的第三方组件在实际的容器化应用开发过程当中,很少从零开始构建镜像,而是在基础镜像之上增加自己的程序和代码,然后统一打包最终的业务镜像并上线运行,这导致许多开发者根本不知道基础镜像中包含多少组件,以及包含哪些组件,包含的组件越多,可能存在的漏洞就越多。 2.恶意镜像公共镜像仓库中可能存在第三方上传的恶意镜像,如果使用了这些恶意镜像来创建容器后,将会影响容器和应用程序的安全3.敏感信息泄露为了开发和调试的方便,开发者将敏感信息存在配置文件中,例如数据库密码、证书和密钥等内容,在构建镜像时,这些敏感信息跟随配置文件一并打包进镜像,从而造成敏感信息泄露(2)容器生命周期的时间短云原生技术以其敏捷、可靠的特点驱动引领企业的业务发展,成为企业数字业务应用创新的原动力。 在容器环境下,一部分容器是以docker的命令启动和管理的,还有大量的容器是通过Kubernetes容器编排系统启动和管理,带来了容器在构建、部署、运行,快速敏捷的特点,大量容器生命周期短于1小时,这样一来容器的生命周期防护较传统虚拟化环境发生了巨大的变化,容器的全生命周期防护存在很大变数。 对防守者而言,需要采用传统异常检测和行为分析相结合的方式,来适应短容器生命周期的场景。 传统的异常检测采用WAF、IDS等设备,其规则库已经很完善,通过这种检测方法能够直观的展示出存在的威胁,在容器环境下,这种方法仍然适用。 传统的异常检测能够快速、精确地发现已知威胁,但大多数未知威胁是无法通过规则库匹配到的,因而需要通过行为分析机制来从大量模式中将异常模式分析出来。 一般来说,一段生产运营时间内的业务模式是相对固定的,这意味着,业务行为是可以预测的,无论启动多少个容器,容器内部的行为总是相似的。 通过机器学习、采集进程行为,自动构建出合理的基线,利用这些基线对容器内的未知威胁进行检测。 (3)容器运行时安全容器技术带来便利的同时,往往会忽略容器运行时的安全加固,由于容器的生命周期短、轻量级的特性,传统在宿主机或虚拟机上安装杀毒软件来对一个运行一两个进程的容器进行防护,显示费时费力且消耗资源,但在黑客眼里容器和裸奔没有什么区别。 容器运行时安全主要关注点:1.不安全的容器应用与传统的Web安全类似,容器环境下也会存在SQL注入、XSS、RCE、XXE等漏洞,容器在对外提供服务的同时,就有可能被攻击者利用,从而导致容器被入侵2.容器DDOS攻击默认情况下,docker并不会对容器的资源使用进行限制,默认情况下可以无限使用CPU、内存、硬盘资源,造成不同层面的DDOS攻击(4)容器微隔离在容器环境中,与传统网络相比,容器的生命周期变得短了很多,其变化频率也快很多。 容器之间有着复杂的访问关系,尤其是当容器数量达到一定规模以后,这种访问关系带来的东西向流量,将会变得异常的庞大和复杂。 因此,在容器环境中,网络的隔离需求已经不仅仅是物理网络的隔离,而是变成了容器与容器之间、容器组与宿主机之间、宿主机与宿主机之间的隔离。 问题2:云原生等保合规问题等级保护2.0中,针对云计算等新技术、新应用领域的个性安全保护需求提出安全扩展要求,形成新的网络安全等级保护基本要求标准。 虽然编写了云计算的安全扩展要求,但是由于编写周期很长,编写时主流还是虚拟化场景,而没有考虑到容器化、微服务、无服务等云原生场景,等级保护2.0中的所有标准不能完全保证适用于目前云原生环境;通过安全狗在云安全领域的经验和具体实践,对于云计算安全扩展要求中访问控制的控制点,需要检测主机账号安全,设置不同账号对不同容器的访问权限,保证容器在构建、部署、运行时访问控制策略随其迁移;对于入侵防范制的控制点,需要可视化管理,绘制业务拓扑图,对主机入侵进行全方位的防范,控制业务流量访问,检测恶意代码感染及蔓延的情况;镜像和快照保护的控制的,需要对镜像和快照进行保护,保障容器镜像的完整性、可用性和保密性,防止敏感信息泄露。 问题3:宿主机安全容器与宿主机共享操作系统内核,因此宿主机的配置对容器运行的安全有着重要的影响,比如宿主机安装了有漏洞的软件可能会导致任意代码执行风险,端口无限制开放可能会导致任意用户访问的风险。 通过部署主机入侵监测及安全防护系统,提供主机资产管理、主机安全加固、风险漏洞识别、防范入侵行为、问题主机隔离等功能,各个功能之间进行联动,建立采集、检测、监测、防御、捕获一体化的安全闭环管理系统,对主机进行全方位的安全防护,协助用户及时定位已经失陷的主机,响应已知、未知威胁风险,避免内部大面积主机安全事件的发生。 问题4:编排系统问题编排系统支撑着诸多云原生应用,如无服务、服务网格等,这些新型的微服务体系也同样存在着安全问题。 例如攻击者编写一段代码获得容器的shell权限,进而对容器网络进行渗透横移,造成巨大损失。 Kubernetes架构设计的复杂性,启动一个Pod资源需要涉及API Server、Controller、Manager、Scheduler等组件,因而每个组件自身的安全能力显的尤为重要。 API Server组件提供的认证授权、准入控制,进行细粒度访问控制、Secret资源提供密钥管理及Pod自身提供安全策略和网络策略,合理使用这些机制可以有效实现Kubernetes的安全加固。 问题5:软件供应链安全问题通常一个项目中会使用大量的开源软件,根据Gartner统计至少有95%的企业会在关键IT产品中使用开源软件,这些来自互联网的开源软件可能本身就带有病毒、这些开源软件中使用了哪些组件也不了解,导致当开源软件中存在0day或Nday漏洞,我们根本无法获悉。 开源软件漏洞无法根治,容器自身的安全问题可能会给开发阶段带的各个过程带来风险,我们能做的是根据SDL原则,从开发阶段就开始对软件安全性进行合理的评估和控制,来提升整个供应链的质量。 问题6:安全运营成本问题虽然容器的生命周期很短,但是包罗万象。 对容器的全生命周期防护时,会对容器构建、部署、运行时进行异常检测和安全防护,随之而来的就是高成本的投入,对成千上万容器中的进程行为进程检测和分析,会消耗宿主机处理器和内存资源,日志传输会占用网络带宽,行为检测会消耗计算资源,当环境中容器数量巨大时,对应的安全运营成本就会急剧增加。 问题7:如何提升安全防护效果关于安全运营成本问题中,我们了解到容器安全运营成本较高,我们该如何降低安全运营成本的同时,提升安全防护效果呢?这就引入一个业界比较流行的词“安全左移”,将软件生命周期从左到右展开,即开发、测试、集成、部署、运行,安全左移的含义就是将安全防护从传统运营转向开发侧,开发侧主要设计开发软件、软件供应链安全和镜像安全。 因此,想要降低云原生场景下的安全运营成本,提升运营效率,那么首先就要进行“安全左移”,也就是从运营安全转向开发安全,主要考虑开发安全、软件供应链安全、镜像安全和配置核查:开发安全需要团队关注代码漏洞,比如使用进行代码审计,找到因缺少安全意识造成的漏洞和因逻辑问题造成的代码逻辑漏洞。 供应链安全可以使用代码检查工具进行持续性的安全评估。 镜像安全使用镜像漏洞扫描工具持续对自由仓库中的镜像进行持续评估,对存在风险的镜像进行及时更新。 配置核查核查包括暴露面、宿主机加固、资产管理等,来提升攻击者利用漏洞的难度。 问题8:安全配置和密钥凭证管理问题安全配置不规范、密钥凭证不理想也是云原生的一大风险点。 云原生应用会存在大量与中间件、后端服务的交互,为了简便,很多开发者将访问凭证、密钥文件直接存放在代码中,或者将一些线上资源的访问凭证设置为弱口令,导致攻击者很容易获得访问敏感数据的权限。 #云原生安全未来展望#从日益新增的新型攻击威胁来看,云原生的安全将成为今后网络安全防护的关键。 伴随着ATT&CK的不断积累和相关技术的日益完善,ATT&CK也已增加了容器矩阵的内容。 ATT&CK是对抗战术、技术和常识(Adversarial Tactics, Techniques, and Common Knowledge)的缩写,是一个攻击行为知识库和威胁建模模型,它包含众多威胁组织及其使用的工具和攻击技术。 这一开源的对抗战术和技术的知识库已经对安全行业产生了广泛而深刻的影响。 云原生安全的备受关注,使ATTACK Matrix for Container on Cloud的出现恰合时宜。 ATT&CK让我们从行为的视角来看待攻击者和防御措施,让相对抽象的容器攻击技术和工具变得有迹可循。 结合ATT&CK框架进行模拟红蓝对抗,评估企业目前的安全能力,对提升企业安全防护能力是很好的参考。

大数据未来将是怎样的发展趋势

行业主要上市公司:易华录()、美亚柏科()、海量数据()、同有科技()、海康威视()、依米康()、常山北明()、思特奇()、科创信息()、神州泰岳()、蓝色光标()等

本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等

产业概况

1、定义:大数据产业覆盖范围广

根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:

2、产业链剖析:大数据产业链庞大

大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;

大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;

大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。

大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。

中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。

在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。

产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升

我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。 自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。

产业政策背景:优化升级数字基础设施,鼓励大数据产业发展

2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。 此后国家相关部门出台了一系列政策,鼓励大数据产业发展。

当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。 数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。 在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。

产业发展现状

1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域

——大数据产业规模:2021年超过800亿元

近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。

——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主

从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,

CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。 近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。 未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。

从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。 大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。

CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。

2、细分市场一:金融大数据

——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升

从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。

近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。 2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。 2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。 随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。

——金融大数据应用场景

过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。 目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。

3、细分市场二:政府大数据

——政府大数据需求:互联网政务服务用户规模不断提升

从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。 截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。 “十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。 2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。 截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。

——政府大数据应用场景

中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。 加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。 大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。 舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。

4、细分市场三:互联网大数据

——互联网大数据需求:互联网行业规模不断提升

在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。 企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。 2021年我国规模以上互联网和相关服务企业完成业务收入亿元,同比增长21.2%。

2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。

注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。 2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。

——互联网大数据应用场景

在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。

产业竞争格局

1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区

根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。 其中,广东省的大数据企业最多。

2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐

根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。

大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。 在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。

政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。 工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。

注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。

产业发展前景:大数据将继续保持高速增长

大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。 伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。 预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。

更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。


相关标签: 公有云的演变公有云的含义从概念到变革性技术

本文地址:http://www.hyyidc.com/article/35334.html

上一篇:托管服务与外包理解关键差异托管服务与外贸...
下一篇:揭开公有云的神秘面纱深入了解其架构和优势...

温馨提示

做上本站友情链接,在您站上点击一次,即可自动收录并自动排在本站第一位!
<a href="http://www.hyyidc.com/" target="_blank">好有缘导航网</a>