边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。
其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。
从分布式开始
边缘计算并非是一个新鲜词。作为一家内容分发网络CDN和云服务的提供商AKAMAI,早在2003年就与IBM合作“边缘计算”。作为世界上最大的分布式计算服务商之一,当时它承担了全球15-30%的网络流量。在其一份内部研究项目中即提出“边缘计算”的目的和解决问题,并通过AKAMAI与IBM在其WebSphere上提供基于边缘Edge的服务。
对物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。这无疑将大大提升处理效率,减轻云端的负荷。由于更加靠近用户,还可为用户提供更快的响应,将需求在边缘端解决。
边缘计算是网络中最靠近物或数据源头融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务。 在更靠近终端的网络边缘上提供服务是边缘计算最大的特点。 在数据处理的时效性与有效性方面成为云计算的有力补充。 根据边缘计算产业联盟(ECC)发布的边缘计算2.0定义:边缘计算的业务本质是云计算在数据中心之外汇聚节点的延伸和演进,主要包括云边缘、边缘云和边缘网关三类落地形态;以“边云协同”和“边缘智能”为核心能力发展方向;软件平台需要考虑导入云理念、云架构、云技术,提供端到端实时、协同式智能、可信赖、可动态重置等能力;硬件平台需要考虑异构计算能力,如ARM、X86、GPU、NPU、FPGA 等。 因此,我们可以看到边缘计算2.0其实是由边缘网关、边缘云、云边缘3种落地形态组成。 边缘计算的优势和发展边缘计算的发展前景广阔,被称为“人工智能的最后一公里”,但它还在发展初期,有许多问题需要解决,如:框架的选用,通讯设备和协议的规范,终端设备的标识,更低延迟的需求等。 随着 IPv6 及 5G 技术的普及,其中的一些问题将被解决,虽然这是一段不小的历程。 相较于云计算,边缘计算有以下这些优势。 优势一:更多的节点来负载流量,使得数据传输速度更快。 优势二:更靠近终端设备,传输更安全,数据处理更即时。 优势三:更分散的节点相比云计算故障所产生的影响更小,还解决了设备散热问题。
边缘计算指在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。
主要用途
看似“生僻”的边缘计算其实并不“边缘”,而且意义重大。边缘计算和云计算有些类似,都是处理大数据的计算运行方式。但不同的是,这一次,数据不用再传到遥远的云端,在边缘侧就能解决,更适合实时的数据分析和智能化处理,也更加高效而且安全。
如果说物联网的核心是让每个物体智能连接、运行,那么边缘计算就是通过数据分析处理,实现物与物之间传感、交互和控制。它是物联网从概念到应用的一把钥匙,更是制造业从“笨拙”变得“智慧”的重要途径。
工信部信息化和软件服务业司副司长安筱鹏在会上说,传统制造业向智能化升级的过程中,特别需要通过边缘计算技术,将车间里的生产设备智能连接,提高效率,创新模式。
当前,全球数字化革命正引领新一轮产业变革。物联网也被普遍认为是推动传统产业变革和全球经济发展的又一次浪潮。据统计,到2020年将有超过500亿的终端与设备互联。未来超过50%的数据需要在边缘侧分析、处理和储存。边缘计算应用广阔,机遇无限。
边缘计算是什么
边缘计算(Edge Computing)是一种分布式计算模型,它将计算和数据存储放置在靠近数据源头的边缘设备中,而不是在远程的数据中心或云服务器中进行处理。
边缘计算旨在解决传统计算模型中的延迟和带宽限制问题,这些问题在需要实时响应或大规模数据处理时尤为明显。通过在边缘设备上进行本地计算,可以减少数据在网络中传输的时间和成本,并提高应用程序的响应速度和性能。
边缘计算的另一个优点是它可以提高数据隐私和安全性。由于数据不必在云服务器或其他远程数据中心中传输,边缘设备上的数据可以更好地保护隐私,并降低数据泄露的风险。
边缘计算(Edge Computing)是一种分布式计算范式,它将数据处理和计算任务从云端(数据中心)转移到网络边缘的设备上。简单来说,边缘计算就是在靠近数据产生源的地方进行数据处理和分析。
通俗地讲,边缘计算就像把数据处理任务从一个远程大脑(云端数据中心)移到离你更近的小脑(边缘设备,如手机、智能家居设备等)。这样做的好处有以下几点:
1. 边缘计算(Edge Computing)是一种分布式计算范式,它将计算任务从数据中心迁移到靠近数据源的设备上。 这种方法可以减少网络延迟、提高数据处理速度,并在一定程度上保护用户隐私。 2. 边缘计算可应用于许多领域,包括但不限于:物联网(IoT):边缘计算可用于实时处理智能家居、工业自动化、智能交通等领域的大量数据,从而提高响应速度和减少数据传输成本。 3. 无人驾驶:通过在车辆本地进行数据处理和决策,边缘计算可以提高自动驾驶汽车的反应速度,从而提高安全性。 4. 增强现实(AR)和虚拟现实(VR):边缘计算可以减少AR和VR设备在渲染图像和处理数据时的延迟,提高用户体验。 5. 智能城市:边缘计算可以帮助处理城市基础设施中的大量数据,例如交通管理、能源管理和公共安全等。 6. 医疗保健:通过实时分析患者数据,边缘计算可以帮助医生及时发现病情变化,提高诊断和治疗效果。 7. 视频监控:边缘计算可在摄像头端实现实时视频分析,提高安全监控效率并保护用户隐私。 8. 零售业:边缘计算可以帮助零售商实时分析顾客数据、库存数据,优化商店布局和库存管理。 9. 能源管理:边缘计算可以实时监测和优化能源系统,提高能源效率。 10. 农业:通过实时监测和分析土壤、气候等数据,边缘计算可以帮助农民提高农业生产效率。 这些只是边缘计算应用领域的一部分,随着技术的发展,边缘计算将在更多领域发挥作用。
“边缘计算”的概念本身并不是一个“新鲜词”。 早在2003年,CDN服务商Akamai就与IBM合作推出了最早的“边缘计算”。 如果以时间维度看,从亚马逊在2006年推出AWS看作是云计算的起点开始,那么它要比云计算被提出的时间更更加的早。 不过,过去很多年的时间由于技术和应用场景等各种原因,边缘计算一直没有获得太多的关注,直到5G时代的到来,才让一直处在“很边缘”的边缘计算得到了全新的发展良机。 云计算是通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。 这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。 云计算vs边缘计算云计算的不足随着边缘计算的兴起,在太多场景中需要计算庞大的数据并且得到即时反馈。 这些场景开始暴露出云计算的不足,主要有以下几点:大数据的传输问题:据估计,到2020 年,每人每天平均将产生 1.5GB 的数据。 随着越来越多的设备连接到互联网并生成数据,以中心服务器为节点的云计算可能会遇到带宽瓶颈。 数据处理的即时性:据统计,无人驾驶汽车每秒产生约 1GB 数据,波音 787 每秒产生的数据超过 5GB;2020 年我国数据储存量达到约 39ZB,其中约 30% 的数据来自于物联网设备的接入。 海量数据的即时处理可能会使云计算力不从心。 隐私及能耗的问题:云计算将身体可穿戴、医疗、工业制造等设备采集的隐私数据传输到数据中心的路径比较长,容易导致数据丢失或者信息泄露等风险;数据中心的高负载导致的高能耗也是数据中心管理规划的核心问题。 边缘计算的优势和发展边缘计算的发展前景广阔,被称为“人工智能的最后一公里”,但它还在发展初期,有许多问题需要解决,如:框架的选用,通讯设备和协议的规范,终端设备的标识,更低延迟的需求等。 随着 IPv6 及 5G 技术的普及,其中的一些问题将被解决,虽然这是一段不小的历程。 相较于云计算,边缘计算有以下这些优势。 优势一:更多的节点来负载流量,使得数据传输速度更快。 优势二:更靠近终端设备,传输更安全,数据处理更即时。 优势三:更分散的节点相比云计算故障所产生的影响更小,还解决了设备散热问题。 两者既有区别,又互相配合上文讲了云计算的缺点以及边缘计算的优点,那么是不是意味着在未来,边缘计算更胜云计算一筹呢?其实不然!云计算是人和计算设备的互动,而边缘计算则属于设备与设备之间的互动,最后再间接服务于人。 边缘计算可以处理大量的即时数据,而云计算最后可以访问这些即时数据的历史或者处理结果并做汇总分析。
边缘计算是一种分布式计算模式,其特点包括以下几点:
边缘计算有以下的六大特点:第一,去中心化边缘计算就是让网络、计算、存储、应用从“中心”向边缘分发,以就近提供智能边缘服务。 第二,非寡头化边缘计算是互联网、移动互联网、物联网、工业互联网、电子、AI、IT、云计算、硬件设备、运营商等诸多领域的“十字入口”,一方面参与的各类厂商众多,另一方面“去中心化”在产品逻辑底层,就一定程度上通向了“非寡头化”。 第三,万物边缘化边缘计算和早年的IT、互联网,如今的云计算、移动互联网,以及未来的人工智能一样,具备普遍性和普适性。 第四,安全化在边缘计算出现之前,用户的大部分数据都要上传至数据中心,在这一上传的过程中,用户的数据尤其是隐私数据,比如个体标签数据、银行账户密码、电商平台消费数据、搜索记录、甚至智能摄像头等等,就存在着泄露的风险。 而边缘计算因为很多情况下,不要再把数据上传到数据中心,而是在边缘近端就可以处理,因此也从源头有效解除了类似的风险。 第五,实时化随着工业互联网、自动驾驶、智能家居、智能交通、智慧城市等各种场景的日益普及,这些场景下的应用对计算、网络传输、用户交互等的速度和效率要求也越来越高。 以自动驾驶为例,在这些方面,几乎是要求秒级甚至是毫秒级的速度。 爱陆通的具有边缘计算技术的工业网关可以更好地进行数据传输。 第六,绿色化数据是在近端处理,因此在网络传输、中心运算、中心存储、回传等各个环节,都能节省大量的服务器、带宽、电量乃至物理空间等诸多成本,从而实现低成本化、绿色化。
边缘计算即在设备端附近产生的计算。
边缘计算是为应用开发者和服务提供商在网络的边缘侧提供云服务和IT环境服务;目标是在靠近数据输入或用户的地方提供计算、存储和网络带宽。
通俗地说:边缘计算本质上是一种服务,就类似于云计算、大数据服务,但这种服务非常靠近用户;为什么要这么近?目的是为了让用户感觉到刷什么内容都特别快。
物联网应用
全球智能手机的快速发展,推动了移动终端和“边缘计算”的发展。而万物互联、万物感知的智能社会,则是跟物联网发展相伴而生,边缘计算系统也因此应声而出。
事实上,物联网的概念已经提出有超过15年的历史,然而,物联网却并未成为一个火热的应用。一个概念到真正的应用有一个较长的过程,与之匹配的技术、产品设备的成本、接受程度、试错过程都是漫长的,因此往往不能很快形成大量使用的市场。
根据Gartner的技术成熟曲线理论来说,在2015年IoT从概念上而言,已经到达顶峰位置。因此,物联网的大规模应用也开始加速。因此未来5-10年内IoT会进入一个应用爆发期,边缘计算也随之被预期将得到更多的应用。
本文地址:http://www.hyyidc.com/article/25288.html