随着数字世界的发展,数据中心已成为現代社会不可或缺的基础设施。数据中心的运营消耗了大量的能源,對環境造成了重大影响。因此,节能已成为数据中心管理的重中之重。本文将探讨数据中心能效管理的最新趋势,这些趋势正在塑造未来的节能实践。
液态冷却是近年来备受关注的一种数据中心冷却技术。与传统的风冷相比,液态冷却可以通过更有效地散热来减少能源消耗。 液态冷却剂,如水或冷媒,被用来吸收服务器产生的熱量,从而降低其溫度并提高能效。 液态冷却技术正在不断发展,预计未来将发挥越来越重要的作用。
人工智能(AI)和机器學習(ML)正在被用于优化数据中心的能效管理。AI 算法可以分析数据中心运营中的数据,识别效率低下的领域并自动采取措施进行优化。ML 模型还可以预测数据中心的能源需求,从而能够提前做出调整以减少浪费。AI 和 ML 在数据中心能效管理中的应用有望进一步提高能效。
数据中心运营商越来越多地转向可再生能源,如太阳能和风能,以减少碳足迹并降低能源成本。可再生能源系统可以安装在数据中心本身或通过电网购买。采用可再生能源有助于减少数据中心运营对环境的影响,并符合可持续发展的趋势。
边缘计算是一种将计算资源放置在接近数据源和用户的地方的架构。与集中式数据中心相比,边缘计算可以减少数据传输的距离,从而降低能耗。边缘计算设备通常具有较低的功耗,进一步提高了能效。边缘计算的兴起预计将对数据中心能效管理产生重大影响。
物联网(IoT)传感器被用于监控数据中心内的環境条件,如温度、湿度和能耗。这些传感器收集的数据可以用来实时优化数据中心的运行,例如调整冷却系统或关闭不必要的设备。物联网传感器在提高数据中心能效管理方面发挥着越来越重要的作用。
实时监测和分析对于数据中心能效管理至关重要。通过使用传感和监测系统,数据中心运营商可以持续跟踪能源消耗并识别效率低下。数据分析可以揭示能源浪费模式,并指导采取有针对性的措施进行改进。实时监测和分析是持续提高数据中心能效的关键。
遵循最佳实践和行业标准对于数据中心能效管理至关重要。这些准则提供了有关设计、运营和维护数据中心以最大化能效的指导。遵守最佳实践和标准有助于确保数据中心高效运营,并符合监管要求。 业界领先的标准包括 ASHRAE TC 9.9 和 ISO 50001.
云计算和虚拟化技术可以提高数据中心能效。云计算消除了对物理服务器的需求,而虚拟化允许在单个物理服务器上运行多个虚拟机。这些技术可以减少能源消耗,因为它们提高了资源利用率。云计算和虚拟化在未来数据中心能效管理中将继续发挥重要作用。
数据中心能效管理的趋势正在不断演变,以应对日益增长的能源需求和环境问题。液态冷却、人工智能、可再生能源、边缘计算、物联网传感器、实时监测和分析、最佳实践和标准以及云计算等技术正在塑造未来的节能实践。通过采用这些趋势,数据中心运营商可以显着提高能效,降低能源成本,并减少对环境的影响。随着数字世界的持续发展,数据中心能效管理将继续是数据中心运营中的一个关键因素。
(报告出品方/分析师:银河证券研究院 赵良毕)
报告原标题: 通信行业深度报告:ICT“双碳”新基建,IDC 温控新机遇
(一)算力建设关乎数字经济发展,各国均不断发力
加快培育数据要素市场,全球算力竞争不断提升。 2020 年 4 月 9 日,《中共中央、国务院关于构建更加完善的要素市场化配置体制机制的意见》中,数据首次作为一种新型生产要素在文件中出现,与土地、劳动力、资本和技术等传统要素并列。计算力已经与国家经济息息相关。
IDC&清华产业研究院联合发布的《2021-2022 全球计算力指数评估报告》表明,计算力是数字经济时代的关键生成要素:
(1)从 2016-2025 年的整体趋势及预测来看,各个国家的数字经济占 GDP 的比重持续提升,预计 2025 年占比将达到 41.5%。
(2)计算力作为数字经济时代的关键生产力要素,已经成为挖掘数据要素价值,推动数字经济发展的核心支撑力和驱动力。
(3)国家计算力指数与 GDP 的走势呈现出了显著的正相关。评估结果显示十五个重点国家的计算力指数平均每提高 1 点,国家的数字经济和 GDP 将分别增长 3.5%和 1.8%,预计该趋势在 2021-2025 年将继续保持。同时,通过针对不同梯队国家的计算力指数和 GDP 进行进一步的回归分析后,研究发现:当一个国家的计算力指数达到 40 分以上时,国家的计算力指数每提升 1 点,其对于 GDP 增长的推动力将增加到 1.5 倍,而当计算力指数达到 60 分以上时,国家的计算力指数每提升 1 点,其对于 GDP 增长的推动力将提高到 3.0 倍,对经济的拉动作用变得更加显著。
数字化进程不断推进,发展中国家经济增速较高。 根据 IDC 数据显示,2016 年到 2025 年,数字经济占比不断提升,全球数字经济占比2025E为41%,其中发达国家数字经济占比为48.10%,比发展中国家高 17.8 个百分点。中美两国计算力指数综合评估较高,中国计算力发展水平涨幅达 13.5%,处于较高增长水平。总体来看,数字经济为各国 GDP 总量贡献不断提升,算力提升推动数字经济向好发展。
全球公有云用户市场保持增长,IT 侧资本开支不断增加。 云是推动企业数字化转型升级的重要驱动力, 企业不断增加对移动技术、协作以及其他远程工作技术和基础架构的投资。预计到 2023 年,用户支出将达到近 6000 亿美元,云将占全球企业 IT 消费市场的 14.2%。其中软件化服务(SaaS)是最大的细分市场,预计该市场在 2023E 用户支出增长至 2080.80 亿美元,相比 2021 年增长 36.73%;云基础建设(IaaS)将达到 1562.76 亿美元,相比 2021 年增长 70.53%。为了获得数字经济时代的比较优势,全球主要国家在数据中心的建设上进行了大规模投资,全球经济受到新冠疫情的严重影响下,数据中心的建设保持了较高增速,预计在未来几年云服务提供商与电信公司之间的合作日益增加,全球云市场有望进一步增长。
中国 IDC 市场规模增速较快,目前处于高速发展期。 受益于我国“新基建”战略提出和持续攀升的互联网流量,2021 年数据中心建设规模不断增长。根据中国信通院数据,我国 2021年 IDC 行业规模约 1500.2 亿元,近 5 年中国 IDC 市场年均复合增速约达 30%,领先于全球 IDC市场增速,其中近三年中国 IDC 市场具有高增速。我国 IDC 行业增速较快主要系我国 5G 建设持续推进,5G 应用项目多点开花不断落地,预计到 2025 年,我国数据中心市场规模达到 5952亿元。随着数字经济“东数西算”工程加速推进、互联网和云计算大客户需求不断扩张及数据中心在物联网、人工智能等领域的广泛应用,数据中心行业发展前景广阔,有望保持高速增长。
IDC 机柜数量不断增长,中国东部地区 IDC 中心较多。 2021 年 IDC 的机柜量增长了 99.15万架,增速为 30%,机柜量总数达到 415.06 万架,年度增长率达到 31.39%。随着 5G 时代数字经济向 社会 各领域持续渗透,数据量爆炸式增长使得全 社会 对算力需求提升,预计每年仍将以20%以上速度高增,有望打开市场新空间。目前我国大部分数据中心集中在东部及沿海地区,根据 CDCC 数据,2021 年华东、华北、华南三地区机柜数占全国总数的 79%,而东北、西北地区占比相对较低。
我国东部地区 IDC 上架率较高,西部地区加速建设。 目前 IDC 机房在我国东西部呈现差异较大发展,体现东密西疏、东热西冷的特点。2021 年新增机柜对比可知,东部及沿海地区数据中心上架率高,西部上架率较低。2021 年华东、华北、华南三地上架率约 60%-70%,而东北、西北、西南及华中上架率仅有 30%-40%。在政策布局方面,国家不断推进数字经济发展,形成以数据为纽带的区域协调发展新格局。对于网络时延要求不高的业务,率先向西部转移建设,由于西部地区气温较低优势突出,实施“东数西算”有利于数据中心提高能效,西部地区产业跨越式发展,促进区域经济有效增长。
(二)数字经济政策护航,“东数西算”工程建设有望超预期
把握数字化发展机遇,拓展经济发展新空间。2022 年 1 月,国务院发布《“十四五”数字经济发展规划》,规划强调数字经济是继农业经济、工业经济之后的主要经济形态,是以数据资源为关键要素,以现代信息网络为主要载体,以信息通信技术融合应用、全要素数字化转型为重要推动力,促进公平与效率更加统一的新经济形态。同时,规划明确提出到 2025 年,数字经济迈向全面扩展期,数字经济核心产业增加值占 GDP 比重达到 10%。基于上述规划,2022年 5 月 26 日,工信部在 2022 年中国国际大数据产业博览会上指出,坚持适度超前建设数字基础设施,加快工业互联网、车联网等布局。
推进绿色数据中心建设,提升数据中心可再生能源利用率。 我国能源结构正处在不断优化的过程中,新能源地区分布不均衡,特别是水力、光伏、风能,主要集中在中西部地区,而使用端主要在东部沿海地区,虽然通过“西电东送”工程部分缓解了东部地区用电紧张问题,但是作为高耗能的数据中心产业,协调东西部发展布局、降低能耗就十分必要。全国各省市、地区相继出台了各种强调数据中心绿色、节能的政策要求,进而促进能源生产、运输、消费等各环节智能化升级,催化能源行业低碳转型。
东西部资源高效匹配,建立全国一体化协同创新体系。 “东数西算”工程是我国继“南水北调”、“西气东输”、“西电东送”之后的又一项重大的国家战略工程,将东部海量数据有序引导到西部,优化数据中心建设布局,缩小东西部经济差异,促进东西部协同发展。2022 年 2 月17 日,国家发改委、中央网信办、工业和信息化部、国家能源局联合印发通知,同意在京津冀、长三角、粤港澳大湾区、成渝、内蒙古、贵州、甘肃、宁夏等 8 地启动建设国家算力枢纽节点,并规划了 10 个国家数据中心集群。全国一体化大数据中心体系完成总体布局设计,“东数西算”工程正式全面启动。国家以“东数西算”为依托,持续推进数据中心与算力、云、网络、数据要素、数据应用和安全等协同发展,形成以数据为纽带的区域协调发展新格局,助力数字经济不断发展。
全球算力网络竞争力凸显,ICT 产业链有望迎来发展新空间。 通过全国一体化的数据中心布局建设,扩大算力设施规模,提高算力使用效率,实现全国算力规模化、集约化发展,有望进一步提升国家算力水平和全球竞争能力。同时,扩大数据中心在中西部地区覆盖,能够就近消纳中西部地区新型绿色能源,持续优化数据中心能源使用效率。通过算力枢纽和数据中心集群建设,将有力带动相关产业上下游投资,促进东西部数据流通、价值传递,延展东部发展空间,推进西部大开发形成全国均衡发展新格局。
(三)双碳减排目标明确,绿色节能成为发展必需
能源变革不断创新升级,低碳转型融入 社会 经济发展。 自上个世纪人类逐渐认识到碳排放造成的不利影响,各国政府和国际组织不断进行合作,经过不懈努力、广泛磋商,在联合国和世界气候大会的框架下达成了一系列重要共识,形成了《联合国气候变化框架公约》(1992 年签署,1994 年生效)、《京都议定书》(1997 年达成,2005 年生效)和《巴黎协定》(2015年达成,2016 年生效)等文件,其中《巴黎协定》规定了“把全球平均气温升幅控制在工业化前水平以上低于 2 以内”的基础目标和“将气温升幅限制在工业化前水平以上 1.5 之内”的努力目标。
推动能源革命,落实碳达峰行动方案。 为了达到《巴黎协定》所规定的目标,我国政府也提出了切合我国实际的双碳行动计划,2020 年 9 月 22 日,我国在第七十五届联合国大会上宣布,中国力争 2030 年前二氧化碳排放达到峰值,努力争取 2060 年前实现碳中和目标。中国的“双碳”目标正式确立,展现了中国政府应对全球气候变化问题上的决心和信心。同时 2021年度《政府工作报告》中指出:扎实做好碳达峰、碳中和各项工作,制定 2030 年前碳排放达峰行动方案。优化产业结构和能源结构。推动煤炭清洁高效利用,大力发展新能源,在确保安全的前提下积极有序发展核电。扩大环境保护、节能节水等企业所得税优惠目录范围,促进新型节能环保技术、装备和产品研发应用,培育壮大节能环保产业,推动资源节约高效利用。落实 2030 年应对气候变化国家自主贡献目标。加快发展方式绿色转型,协同推进经济高质量发展和生态环境高水平保护,单位国内生产总值能耗和二氧化碳排放分别降低 13.5%、18%。
聚焦数据中心低碳发展,实现双碳方式产业发展。 在双碳背景下,“东数西算”工程中数据中心西部迁移,PUE 值有望降低带来能耗电量高效利用。能源高效节能、革新升级已是大势所趋和必然要求。
(一)数据中心能耗突出,绿色节能是发展趋势
绿电成为发展趋势,低碳发展中发挥重要作用。 随着大力发展数据中心产业,数据中心能耗在国民经济中的占比也在不断提高。研究表明,预计 2025 年,数据中心能耗总量将达到 3952亿 kW·h,占全 社会 用电总量的 4.05%,比例逐年攀升。整体来看,由服务器、存储和网络通信设备等所构成的 IT 设备系统所产生的功耗约占数据中心总功耗的 45%。空调系统同样是数据中心提高能源效率的重点环节,所产生的功耗约占数据中心总功耗的 40%。降 PUE 将成为未来发展趋势,主要从制冷方面入手。
数据中心碳排放不断控制,PUE 值不断改善。 根据国家能源局 2020 年全国电力工业统计数据 6000 千瓦及以上电厂供电标准煤耗每度电用煤 305.5 克,二氧化碳排放量按每吨标煤排放 2.7 吨二氧化碳来计算,2021 年全国数据中心二氧化碳排放量 7830 万吨,2030 年预计排放约 1.5 亿吨二氧化碳。
量化指标评估数据中心能源效率。 为评价数据中心的能效问题,目前广泛采用 PUE(Power Usage Effectiveness)作为重要的评价指标,指标是数据中心消耗的所有能源与 IT 负载消耗的能源的比值。PUE 通常以年度为计量区间,其中数据中心总能耗包括 IT 设备能耗和制冷、配电等系统的能耗,其值大于 1,越接近 1 表明非 IT 设备耗能越少,即能效水平越好。
数据中心空调系统及服务器系统能耗占比较大。 数据中心的耗能部分主要包括 IT 设备、制冷系统、供配电系统、照明系统及其他设施(包括安防设备、灭火、防水、传感器以及相关数据中心建筑的管理系统等)。整体来看,由服务器、存储和网络通信设备等所构成的 IT 设备系统所产生的功耗约占数据中心总功耗的 45%。其中服务器系统约占 50%,存储系统约占 35%,网络通信设备约占 15%。空调系统仍然是数据中心提高能源效率的重点环节,它所产生的功耗约占数据中心总功耗的 40%。电源系统和照明系统分别占数据中心总耗电量的 10%和 5%。
(三)温控系统持续优化,节能技术变革打开新机遇
温控系统多元化趋势,节能技术不断突破。 当前主流的制冷方式包括风冷、水冷、间接蒸发冷却和液冷技术,根据数据中心规模、环境特点选择合适的制冷技术。提高数据中心的能效,尤其是空调制冷系统的能效成为研究重点。目前,数据中心空调制冷能效比的提升主要从液冷和自然冷源两方面入手。从制冷方式来看,风冷将逐渐被安装灵活、效率更高的液冷方式所取代。液冷技术目前应用于 5G 场景,通常对骨干网 OTN 设备、承载网设备以及 5G BBU 设备进行液冷,采用液冷技术可以通过液体将发热元件热量带走,实现服务器的自然散热,相互传统制冷方法,液冷技术更为高效节能。
冷却系统不断优化。 为了客观评价这些制冷技术以便进一步提高节能减排效率,中国制冷学会数据中心冷却工作组研究认为:采用数据中心冷却系统综合性能系数(GCOP)作为评价指标更为合理。
其中,GCOP 为数据中心冷却系统综合性能系数指标,用于评价数据中心冷却系统的能效。为数据中心总能耗,其中不仅包括数据中心市电供电量,也包括数据中心配置的发电机的供电量。为制冷系统能耗,包括机房外制冷系统的能耗,另外包括 UPS 供电的制冷风扇、关键泵以及设备机柜内风扇等制冷设备产生的能耗。
实际情况中,为了使能效评价结果更具有说服力与可比较性。冷却工作组建议使用数据中心全年平均综合性能系统数的(GCOPA)指标和特定工况下数据中心冷却系统综合性能系数(GCOPS)作为评价标准。
冷却工作组根据上述标准针对来自内蒙古呼和浩特、广东深圳、河北廊坊等地的高效数据中心进行分析。这些数据中心分布在不同建筑气候区,使用了不同系统形式和运行策略,例如高效末端、自然冷却、AI 控制的运行优化等。数据表明西部地区建设新型数据中心制冷能耗较优。我国数据中心冷却系统能效存在极大差异,提升我国数据中心冷却系统的能效意义较大,冷却系统仍存在巨大的节能潜力。
数据中心容量不断扩充,中美两国贡献较多。 根据 Synergy Research Group 的最新数据显示,由大型供应商运营的大型数据中心数量已增至 700 家,而以关键 IT 负载衡量,美国占这些数据中心容量的 49%,中国是继美国之后对超大型数据中心容量贡献第二大的国家,占总量的 15%。其余的产能分布在亚太地区(13%)、EMEA 地区(19%)和加拿大/拉丁美洲(4%)。超大规模数据中心数量翻一番用了五年时间,但容量翻番用了不到四年时间。
空调系统建设成本较多。 根据IBM数据,数据中心的建设成本中空调系统的占比为16.7%。总体来说,2021 年数据中心基础设施设备总支出为 1850 亿美元,能源方面建设资本开支占较大份额,能源建设及利用效率有望进一步提升。
数据中心资本稳步增长,温控市场打开新空间。 根据 Synergy Research 的数据,2021年数据中心基础设施设备总支出(包括云/非云硬件和软件)为 1850 亿美元,公有云基础设施设备支出占比为 47%。面向硬件的服务器、存储和网络合计占数据中心基础设施市场的 77%。
操作系统、虚拟化软件、云管理和网络安全占了其余部分。参照 2021 年全球数据中心资本开支增长 10%的现实,假设未来 4 年数据中心每年资本开支保持增长 10%,我国数据中心温控系统市场规模 2021 年为 301 亿元,可在 2025 年达到 441 亿元。
(一)英维克:打造温控全产业链,行业高景气领跑者受益
国内技术领先的精密温控龙头,聚焦精密温控节能产品和解决方案。 公司自成立以来,一直专注于数据机房等精密环境控制技术的研发,致力于为云计算数据中心、通信网络、物联网的基础架构及各种专业环境控制领域提供解决方案,“东数西算”项目中提供节能技术。
公司营业收入高速增长,盈利能力表现良好。 2022Q1,公司实现营收 4.00 亿元,同比增长 17.10%,归母净利润 0.13 亿元,同比下降 59.26%,主要受原材料价格上涨、疫情反复等因素影响。2021 年英维克实现营业收入 22.28 亿元,同比增长 29.71%,自 2017 年以来 CAGR 达34.65%,主要是由于机房温控一些大项目验收确认,以及机柜温控节能产品收入增长。受益于整个行业的景气度,全年实现归母净利润 2.05 亿元,同比增长 12.86%,自 2017 年以来 CAGR达 24.25%,主要源自数据中心及户外机柜空调业务的持续增长。
公司毛利率总体稳定,未来有望止跌回升。 2021 年公司销售毛利率为 29.35%,同比下降9.50%,主要原因系上游原材料成本提升,公司整体盈利能力承压。净利率总体有所下降,销售净利率为 8.92%,同比下降 15.85%。随着公司持续数据机房等精密环境控制技术的研发,技术平台得到复用,规模效应愈发显著,公司未来毛利率及净利率有望企稳回升。
蒸发冷却、液冷技术为未来发展趋势,公司技术储备充足,产品系列覆盖全面。 目前国内数据中心温控方式仍然以风冷、冷冻水为主,由于热密度、耗能的提升,传统方案已经不能满足市场需求,散热方式逐渐从传统风冷模式发展到背板空调、液冷等新型散热方式,数据中心冷却系统呈现出冷却设备贴近服务器、核心发热设备的趋势,液冷、蒸发冷却技术优势明显。
研发投入持续增加提升核心竞争力,温控系统不断优化。 公司以技术创新作为企业发展的主要驱动力,不断加大研发投入。虽然受到上游原材料价格急速上涨和疫情反复的不利影响,公司始终坚持加大研发力度,为公司后续发展提供技术支撑。英维克作为细分行业龙头,及时捕捉市场发展动向,以技术创新作为企业发展的主要驱动力。
公司产品线丰富,方案灵活凸显竞争优势。 英维克的机房温控节能产品主要针对数据中心、服务器机房、通信机房、高精度实验室等领域的房间级专用温控节能解决方案,用于对设备机房或实验室空间的精密温湿度和洁净度的控制调节。其中包括 CyberMate 机房专用空调&实验室专用空调、iFreecooling 多联式泵循环自然冷却机组、XRow 列间空调、XFlex 模块化间接蒸发冷却机组、XStorm 直接蒸发式高效风墙冷却系统、XSpace 微模块数据中心、XRack 微模块机柜解决方案、XGlacier 液冷温控系统等产品与解决方案。
公司的产品直接或通过系统集成商提供给数据中心业主、IDC 运营商、大型互联网公司,历年来公司已为腾讯、阿里巴巴、秦淮数据、万国数据、数据港、中国移动、中国电信、中国联通等用户的大型数据中心提供了大量高效节能的制冷产品及系统。此外,英维克还提供机柜温控节能产品主要针对无线通信基站、储能电站、智能电网各级输配电设备柜、电动 汽车 充电桩、ETC 门架系统等户外机柜或集装箱的应用场合提供温控节能解决方案,以及用于智能制造设备的机柜温控产品。
(二)佳力图:运营商市场企稳互联网市场突破,业绩有望边际改善
精密环境温控龙头,打造恒温恒湿解决方案。 公司产品应用于数据中心机房、通信基站以及其他恒温恒湿等精密环境,公司客户涵盖政府部门以及通信、金融、互联网、医疗、轨道交通、航空、能源等众多行业。公司产品服务于中国电信、中国联通、中国移动、华为等知名企业。目前,公司拥有精密空调设备、冷水机组两大类产品,十三个系列产品线,产品的先进性、可靠性以及节能环保的优势在行业中始终保持主导地位,同时公司依托在环境控制技术和节能技术方面的优势,为数据中心提供节能改造服务。
公司营业收入保持增长,净利润有所下滑。2022Q1,公司实现营收 1.22 亿元,同比下降10.69%,归母净利润 0.14 亿元,同比下降 36.68%,主要受原材料价格上涨、疫情反复、竞争加剧等因素影响。
2021 年佳力图实现营业收入 6.67 亿元,同比增长 6.68%,自 2017 年以来CAGR 达 9.73%,全年实现归母净利润 0.85 亿元,同比下滑 26.35%,2021 年,公司主要是受到以下因素影响导致利润下滑,(1)南京疫情停工待产、限电限产、疫情延时交付验收的各种困难;(2)随着市场规模的不断扩大,国内机房空调市场竞争较激烈;(3)原材料价格特别是大宗商品价格持续上涨,原材料成本占公司营业成本平均比例达 70%以上,是公司产品成本的主要组成部分,铜、镀锌钢板在 2021 年度一直呈现上涨趋势,采购价格较 2020 年上涨了 20%-40%,导致公司成本呈现大比例增长。
图 17. 公司受多因素影响毛利率有所下降(单位:%)
公司精密环境领域产品丰富,技术先进。 公司产品应用于数据中心机房、通信基站以及其他恒温恒湿等精密环境,公司客户涵盖政府部门以及通信、金融、互联网、医疗、轨道交通、航空、能源等众多行业。公司产品服务于中国电信、中国联通、中国移动、华为等知名企业。
目前,公司拥有精密空调设备、冷水机组两大类产品,十三个系列产品线,产品的先进性、可靠性以及节能环保的优势在行业中始终保持主导地位,同时公司依托在环境控制技术和节能技术方面的优势,为数据中心提供节能改造服务。
研发投入不断投入,空调效率持续提升。 虽然受到上游原材料价格急速上涨和疫情反复的不利影响,公司始终保持加强技术研发团队建设,加强与高等院校、行业专家等机构、人士的合作,推动尖端理论研究和实践,依托现有的研发体系,充分发挥节能控制方面的技术优势,加快机房智能节能管理系统的研制,进一步提高公司产品的性能指标,加强在空调换热器效率提升、供配电技术方面的基础性研究实力,全面提升公司在机房环境控制一体化解决方案方面的创新能力。
公司核心技术不断凸显。 2021 年末公司拥有的核心技术有 36 项,同时有包含带封闭式高效冷却循环的通信模块、数据中心冷冻站集中控制系统、机房空调 VRF 系统、CPU 液冷技术、VRF 技术在机房空调领域的初级应用等 28 项在研项目。
(三)其他节能相关公司情况
申菱环境是国内提供人工环境调控整体解决方案的领先企业,服务场景数值中心、电力、化工、能源、轨道交通、环保、军工等领域。产品主要可分为数据服务空调、工业空调、特种空调三部分。公司是华为数据服务空调的主要供应商,与华为存在多年合作关系。除了华为业务的快速增长,也获得了腾讯等互联网龙头企业的认可。此外,申菱环境在储能方面也有布局。
依米康致力于在通信机房、数据中心、智慧建设以及能源管理领域为客户提供产品和整体解决方案,包括从硬件到软件,从室内精密空调到室外磁悬浮主机,从一体机和微模块到大型数据中心的设计、生产和运维服务,助力客户面对能源和生态挑战。公司信息数据领域的关键设备、智能工程、物联软件、智慧服务四大板块业务均可为数据中心产业链提供产品及服务。
高澜股份是国内领先的纯水冷却设备专业供应商,是国家级专精特新“小巨人”企业,从大功率电力电子装置用纯水冷却设备及控制系统起家,产品广泛应用于发电、输电、配电及用电各个环节电力电子装置。2020 年以来,通过企业并购,其新能源 汽车 业务收入大幅提升,动力电池热管理产品、新能源 汽车 电子制造产品收入占总营收比重均大幅上涨,合计收入占总营收比重达到 48.88%,首次超过纯水冷却设备成为公司第一大收入来源。
节能技术突破不及预期导致供给端产能释放缓;
原材料短缺及价格上涨;
市场竞争加剧;
下游数据中心市场增速不及预期。
数据中心作为经济社会运行不可或缺的关键基础设施,是公认的高耗电行业。
据前瞻产业研究院分析,过去十年间,我国数据中心整体用电量以每年超过 10% 的速度递增,其耗电量在 2020 年突破 2000 亿千瓦时,约占全社会用电量的 2.71%,2014-2020 年,数据中心耗电量占比逐年升高。数据中心供电结构中,火电占比超过 70%,会产生相对大量的温室气体和其他污染物。
PUE (Power Usage Effectiveness,电能利用效率) 是衡量数据中心能源使用效率的重要指标。PUE 越接近于 1,代表数据中心对于电能的利用越有效率。截至 2019 年年底,全国超大型数据中心平均 PUE 为 1.46,大型数据中心平均 PUE 为 1.55。这与《关于加快构建全国一体化大数据中心协同创新体系的指导意见》建议的1.3 以下相比,尚有一段距离。
可见,限电对于数据中心产业影响挺大的。顺应碳中和发展趋势,逐步降低碳排放,是数据中心亟需做出的改变。
数据中心如何才能提升能源效率,为降碳做出贡献?主流的数据中心降碳举措可分为 IT 和 非 IT 基础设施两个方面。
非 IT 基础设施方面,常见的有数据中心选址靠近绿色清洁能源、尽量使用可再生能源、采用液冷技术取代风扇散热、数据中心余热回收再利用等等。这其中最为有效的不外乎在数据中心乃至公司运营范围内 100% 使用可再生能源,但这绝非易事——苹果用了 5 年时间才实现公司运营范围内 100% 可再生能源利用。
而在 IT 基础设施方面,企业可立即采用诸多举措来提升能源效率:通过分布式和虚拟化技术将“僵尸”服务器连接起来,最大程度减少 IT 设备空闲;实现服务器和存储的虚拟化与池化,从而大幅提升硬件利用率;通过采用更高能效的芯片产品,结合芯片的自适应电源管理功能来有效管理芯片用电,等等。
虚拟化已十分普遍,超融合基础设施也在近年来逐渐成为主流。作为一种融合的、统一的 IT 基础架构,超融合包含了数据中心常见的元素:计算、存储、网络以及管理工具。超融合以软件为中心,结合 x86 或 ARM 架构的硬件替代传统架构中的专用硬件,从而解决传统架构中管理复杂、难以扩展等问题。
相比传统架构,超融合将架构由三层缩减至两层,不仅可以大幅度节省机房空间,还能进一步整合计算资源,从而提升机房能效。超融合架构自带计算虚拟化和分布式存储,取代了传统物理环境和传统虚拟环境,对数据中心降碳的影响显著。
经过通用场景下的对比计算,从传统物理环境到传统虚拟环境,仅是虚拟化这一层即可带来 20%-80% 的节能;而从传统虚拟环境进一步过渡到超融合架构,通过将分布式存储融合到计算侧,可再带来高达 31% 的能耗节省。以下为计算详情(以下为理论值,不同负载情况下物理服务器能耗会有有所不同,不同服务器也会表现不同,同时不考虑交换机等因素)。
计算虚拟化是从 IT 基础设施层面提升能效的关键。它实现了 IT 基础设施从物理架构到虚拟化的跃升,减少物理服务器的数量、增加 IT 资源的利用率,让数据中心得以使用更少的基础设施即可运行更大的工作负载。IDC 报告指出,数据中心中计算、存储、网络层虚拟化程度越高,所带来的碳影响就越小。
以 4 台物理服务器搭配 1 台存储系统的配置为例,通过用虚拟化取代原有的物理机,能实现约为 20% 到 80% 的能耗节省(取决于虚拟机部署的密度)。
传统物理环境 vs. 传统虚拟环境
(以 4 台物理服务器搭配 1 台存储系统为例)如图所示,此场景中两种架构的最大差异在于对计算资源的利用率不同:在相同的硬件条件下,计算资源的利用率越高,能获得的节能优势就越大。虚拟化架构通过高度利用 CPU 资源(此场景预设的 CPU 超分比例为 1:4,通常属于中到重度计算需求使用),可将平均每计算核心耗能降低约 74%。
在实际使用场景中,虚拟机部署密度的不同,也会带来不同的节能效果:
我们的研究表明,通过更加严格的管理,公司可以将数据中心的能效提高一倍,从而降低成本并减少温室气体的排放。 具体而言,公司需要更积极地管理技术资产,提高现有服务器的利用率水平;公司还需要更准确地预测业务需求对应用程序、服务器和数据中心设施容量的推动效应,以便控制不必要的资本和运营支出。 数据中心的效率是一个战略问题。 企业建造和运营数据中心花费的资金在公司IT预算中占的比例不断上升,导致用于急需技术项目的预算越来越少。 数据中心建造计划是董事会一级的决策。 同时,监管部门和外部利益相关方也越来越关注公司管理自身碳足迹的方式。 采用最佳实践不仅有助于公司减少污染,还能够提高它们作为良好企业公民的形象。 IT成本高昂如今,公司进行的分析越来越复杂,客户要求实时访问账户,广大员工也在寻找新的技术密集型协作方法。 因此,即使在经济放缓时,人们对于计算、存储和网络容量的需求也在继续增长。 为了应对这一趋势,IT部门正不断增加计算资源。 在美国,数据中心的服务器数量正在以每年约10%的速度增加。 与此同时,在中国和印度等新兴市场,机构正在变得越来越复杂,更多的运营工作实现了自动化,同时有越来越多的外包数据业务在这里进行,因此数据中心的数量呈现出更快的增长态势。 这种对计算资源无法抑制的需求,导致全球数据中心容量稳步上升。 目前,这种增长并没有显露出即将结束的迹象,通常在经济衰退时期它只会进入温和增长状态。 这一增长已经导致了IT成本激增。 如果将设施、存储设备、服务器和人员成本都计算在内,数据中心支出一般会占到企业IT总预算的25%。 随着服务器数量不断增长,电价也正以高于收入和其他IT成本的速度攀升,上述比例只会日益提高。 每年,运行这些设施的成本都在以高达20%的速度上升,而IT总支出的增长速度仅为6%,二者相差极为悬殊。 数据中心支出的不断增加,改变了许多企业的经济结构,尤其是金融、信息服务、媒体和电信公司等信息密集型企业。 在过去5年中,成立一个大型企业数据中心所需的投资已经从1.5亿美元升至5亿美元。 在IT密集型企业中,最大设施的造价正逼近10亿美元。 这一支出挤占了新产品开发的资本,降低了某些数据密集型产品的经济效益,并降低了利润。 此外,不断上升的能耗产生了更多、范围更广的碳足迹,导致了环境恶化。 对于大多数服务行业,数据中心是企业最主要的温室气体排放来源。 在2000到2006年间,用于存储和处理数据的电力翻倍,每个数据设施的平均耗电量相当于2.5万个家庭的总和。 世界上共有4400万台服务器,消耗了总电力的0.5%。 如今,数据中心的碳排放已经接近阿根廷和荷兰等国家的碳排放水平。 仅仅在美国,到2010年数据中心的预计用电增长量就相当于要新建10座电厂的发电量。 目前的预测显示,如果不对需求加以遏制,2020年全球数据中心的碳排放将是现在的4倍。 监管部门已经注意到这些发展趋势,正在督促公司拿出解决方案。 美国环保署(EPA)建议,作为建立运营效率标准的第一步,大型数据中心应当使用能量计。 同时,欧盟也发布了一套自愿执行的行为准则,其中介绍了以较高的能效运行数据中心的最佳实践。 随着数据中心排放量的持续上升,政府可能会为了减排而施加更大的压力。 第2页:全面应对挑战全面应对挑战在信息密集型机构中,许多部门和级别的人员都可以做出影响数据中心运营效率的决策。 金融交易员可以选择运行复杂的蒙特卡洛(MonteCarlo)分析,而药物研究人员可以决定要将多少临床实验影像数据存储起来。 负责应用程序开发的管理人员可以决定用多少编程工作来满足这些需要。 服务器基础设施的管理人员可以做出设备采购决策。 设施主管则可以决定数据中心的位置、电力供应,以及在预测的需求出现前安装设备的时间表。 上述决策通常是在孤立状态下做出的。 销售经理可能会选择将交易由隔夜结算改为即时结算,金融分析师则可能希望为历史数据存储几份副本,他们完全没有考虑到这样做会对数据中心的成本造成什么影响。 应用程序开发人员很少想到要对自身的工作进行优化,以将服务器用量降到最低,也很少考虑开发能够跨服务器共享的设计应用程序。 购买服务器的管理人员可能会选择价格最低或他们最熟悉的产品。 但是这些服务器也许会浪费数据中心的电力或空间。 很多时候,管理人员会超额购买设备,以保证在最极端的使用情况下拥有足够的容量,而这会造成容量过剩。 管理人员往往会建造有多余空间和高制冷容量的设施,以满足极端情况下的需求或应对紧急扩建。 这些决策在整个机构中累加起来,将对成本和环境造成重大影响。 在许多情况下,公司可以在不降低自身数据管理能力的前提下,停用现有的部分服务器,并搁置购买新服务器的计划。 这可以借助一些众所周知的技术来实现。 比如虚拟化,这种技术实际上是通过寻找服务器的空闲部分来运行应用程序,以达到容量共享的目的。 但是公司不一定会这样做,因为没有哪位高管能够承担“端对端”的责任。 在机构内部,管理人员会以最符合自身利益的方式行事,这就造成大多数数据中心效率低下,每台服务器上常常只运行了一个软件应用程序。 我们分析了一家媒体公司的近500台服务器,其中利用率低于3%的占三分之一,而低于10%的则占三分之二。 虽然有诸多用于跟踪使用情况的现成管理工具,但这家公司没有使用其中任何一种。 从全球来看,我们估计服务器的日常利用率一般最高只有5%到10%而已,这造成了能源和资金的浪费。 对此,数据中心管理人员一般会回答,配备这些服务器是为了在极端情况下提供容量,例如应付圣诞节前一天的购物潮。 但一般来说,这一论断并不成立,因为数据显示:如果平均利用率极低,那么高峰时段的利用率也会很低。 此外,数据设施的数量不断攀升,但所存放的服务器和相关设备有时仅占数据设施容量的一半,这说明有上亿美元的资本支出被浪费了。 即使公司报告认为数据中心已经满载,但沿着数据中心的过道行走,经常会发现服务器机架上有很多空位,原先放在这些空位中的设备都已经淘汰。 之所以出现这种不一致的现象,部分原因在于预测数据中心需求的难度很高。 运营的时间框架是一个问题。 数据中心的设计和建造一般需要2年或更长时间,而预计的使用寿命至少为12年,因此容量是在业务部门产生实际需求之前就已经设定的。 与此同时,对于业务决策如何互相影响,如何转化为对新应用程序的需求,以及需要多少服务器容量才能满足需求,还存在着认识不够全面的现象。 例如,如果客户需求增长50%,许多公司很难预测出服务器和数据中心的容量是需要增加25%,还是增加100%。 在极端情况下,我们发现一些设施在投入运营后常年处于半空状态;而另一些公司在建成一个数据中心之后,很快就发觉需要再建一个新的。 如今数据中心已经成为一项昂贵的资产,由此可以推断,财务绩效责任落实得十分糟糕。 设施的财务和管理责任往往会落在不动产管理人员身上,而这些人基本不具备相关的专业技术知识,对于IT与核心业务问题的联系也缺乏深入的认识。 同时,管理服务器运营的人员很少去了解关键运营支出的数据,例如耗电量或IT设备所占不动产的实际成本。 相反,当IT管理人员决定购置更多的应用程序或新的服务器时,有时只会使用硬件初始成本和软件许可证费用等基本指标。 计算实际成本时,需要考虑设施运营和租赁、电力使用、支持以及折旧等因素。 这些费用可能是服务器初始购置成本的4到5倍。 加上前面说到的孤立决策和责任问题,数据中心通常会添加额外的服务器作为保险措施,而很少讨论成本权衡或业务需求。 在缺乏实际成本分析的情况下,过度建造、过度设计和效率低下就成了普遍现象。 第3页:改革运营方式改革运营方式在研究之初,我们以为通过建造新的节能型数据中心,可为降低数据中心的成本和碳排放指出一条光明大道。 新的设施可以发挥当前各种技术的优势,利用自然冷却方法和碳排放较低的电源。 但我们还了解到,在降低成本和碳排放方面成效最显著的方法是改善公司现有数据中心效率低下的状况。 通过改善资产管理,增强管理层的责任意识,并且为降低能源成本和碳排放设立清晰的目标,大多数公司都能够在2012年之前将IT能效提高一倍,并遏制其数据中心温室气体排放的增长。 实际上,您无需另行建造就能获得最环保的数据中心。 积极管理资产一家大型公司采用的做法表明,规范现有服务器和设施的使用就可能产生巨大的收益。 这家公司原本的计划是,增加服务器的数量,并建造一个新的数据中心来容纳这些服务器和其他IT设备,以便满足自身在2010年的信息需求。 该公司的董事会已经批准了这项计划,但这意味着企业在这一年会有大量的资本支出。 于是,这家公司彻底修改了计划。 它将关闭5000多台很少使用的服务器。 通过对占公司应用程序总量15%的3700个应用程序进行虚拟化,可以将现役服务器的数量由2.5万台减少至2万台。 公司还更换了一些较为陈旧的服务器,代之以能够将用电效率提高20%的产品。 这些调整使公司得以搁置原先的数据中心扩建计划,并因此节省了3.05亿美元的资本投资成本。 由于服务器数量和耗电量的下降,运营支出预计将减少4500万美元,降低到7500万美元。 考虑到停用和虚拟化因素,服务器运行时的平均容量利用率将由目前的5.6%升至9.1%。 该公司仍然能够满足自身日益增长的数据需求,但是电力需求的减少,意味着未来4年内的二氧化碳排放将由59.1万吨削减至34.1万吨。 公司还可以通过对不断上升的数据需求加强管理来实现节约。 对于应当保留多少数据,是否要缩减某些数据密集型分析的规模,业务部门应当审查相关的政策。 一些交易的计算可以推迟,以降低服务器在高峰时段的利用率,也并不是所有企业信息都需要基于广泛备份的灾难恢复功能。 更好的预测和规划是提高数据中心效率的基础。 公司应当跟踪自己对数据需求的预测与实际需求之间的差异,然后向能够最大限度减少预测偏差的业务部门提供奖励。 数据中心的管理人员应尽可能全面了解未来的趋势,例如机构增长和业务周期等,然后将这一趋势与自身采用的模型结合起来。 由数据中心、应用架构师和设施操作人员提供的建议可以用于改善这些模型。 一家全球通信公司制定了一套规划流程,将每个业务部门数据增长量的各种发展情况包括在内。 虽然公司最终得出的结论是,它需要扩大容量,但是未来需求中有很大一部分可通过现有资产来满足,这比原计划节约了35%的资本支出。 许多机构并没有将数据中心看作一种稀缺的昂贵资源,而是将其当成了等待注水的水桶。 为了避免这种趋势,公司在估算新服务器或附加应用程序和数据的成本时,可以采用实际拥有成本(TCO)核算法。 业务部门、软件开发人员或IT管理人员在进行支出决策时,很少会将应用程序和服务器的生命周期运行成本考虑在内。 提早计算这些成本,有助于限制过量的需求。 管理这些变化可能十分困难。 大型机构中的许多人并没有意识到数据的成本。 企业的每一个部门都会产生对于数据中心服务的需求。 满足这些需求的责任分散在IT部门(包括运营和应用开发)、设施规划人员、共享服务团队和企业不动产职能部门身上。 成本报告工作并没有统一的标准。 第4页:提高总体效率提高总体效率作为数据中心改进计划的一部分,我们建议采用一项新的指标:企业数据中心平均效率(CADE)。 与美国的企业燃料平均经济性(CAFE)里程标准类似,CADE考虑了数据中心内的设施能效、设施利用率和服务器利用率水平。 将这些因素综合起来,就得到了数据中心的总体效率,即CADE(图)。 减少了成本和碳排放的公司将提高自身数据中心的CADE分数。 这就像在汽车行业中,出色的里程数能够提高CAFE评级一样。 为了给改进工作设立目标,我们将CADE分为五级。 属于CADE第1级的数据中心运营效率最低;大多数机构最初可能都会被归入较低的级别。 关闭利用率低下的服务器、采用虚拟化技术以及提高设施空间的使用效率,都将提高CADE分数。 借助CADE,公司还可以对整个数据中心的设施进行基准比较分析,或者与竞争对手进行比较,也可以为管理人员设立绩效目标并加以跟踪。 在数据中心的需求管理方面,我们建议采用一种由首席信息官全权负责的新治理模型。 在这种体制下,首席信息官能够更为透彻地了解各业务部门的数据需求;对于需要更多服务器或软件应用的新数据项目,他们可以强制要求将能耗和设施成本考虑到相应的投资回报计算中。 我们还建议首席信息官采用一种新的指标来衡量改进情况,请参见副文“提高数据中心的效率”。 通过强化责任,首席信息官将拥有更高的积极性来寻求改进,例如采用虚拟化技术和提高现有设施的利用率。 由于这种模型将关键业务决策的更多责任集中在首席信息官身上,因此不但需要首席执行官的全力支持,而且要求机构转变以往对于业务部门的数据中心扩容请求有求必应的思维模式。 此外,首席信息官还应当设定将数据中心的能效提高
在新基建的浪潮中,腾讯、阿里等大厂纷纷投入千亿布局建造超大规模数据中心。大厂为了“养机”也动用了各种新技术。数据中心作为基础设施,之前 一直在底层无人问津,不过随着数字化的快速推进,数据中心的变化将更能体现新基建“基建+科技”的内涵。对于数据中心而言,进行技术创新,能够合理存储和处理数据,满足上层需求,支撑数字经济腾飞,才能实现其真正价值。
随着大厂的建设提速,国内数据中心遍地开花。据中国产业信息网统计,2020年全球IDC处理的数据流量将达到15.3ZB,占全球产生的流量99.35%;从数据可知IDC主导着全球的数据流量处理。
现在数据中心向着空间集约化、单机大型化的方向发展。超大规模的大型数据中心在2019年末增至504个,还有151个处于不同建设阶段的数据中心。集约化的发展使得单体机房的利用率得以提升,有助于发挥规模效应,降低前期建设成本以及后期运营成本,对于大公司来说,头部效应会更加明显。
1. 超大规模数据中心背后是惊人的耗电量。
服务器年功耗连续上升,机柜功率不足的老旧机房为了不掉电,以至于通过空置机位的办法来解决问题。这样不仅造成了空间的利用率低,也会造成电力利用率的下降,同时还形成不必要的浪费。据预测,2020年中国数据中心耗电量为2962亿千瓦时[3],超越三峡发电量,所以说解决能耗问题刻不容缓。
2. 数据中心安全运行指标与日俱增
数据中心需要完善的安全出入管理规定和消防系统、以及具备事故应急和人员安全应急流程制定的能力。保证所有基础设施正常运行的同时,还需要及时对所有设备进行维护和修理。
3. 令人崩溃的运维
半夜故障工单催人醒,处理不慎易进坑。日常巡检是数据中心运维过程中最重要的一环,通过运维人员日复一日,重复上千次抄表中保持警觉性发现设备存在的隐患。纯粹依靠人力并非行业发展所需,日常运维应借助合适的辅助工具,让有限的人力摆脱机械性的工作。
那么如何让数据中心做到绿色发展,智能规划,轻松运维?Hightopo 和国内其他公司都在积极的回答这个问题。
可视化重塑数据中心机房
针对数据中心系统复杂、多场景和动态性的特点。以 HTML5 的 WebGL 标准实现 3D 的图形渲染技术,以及基于浏览器内核嵌入到小程序实现更方便传播。并采用hightopo轻量架构使其支持跨平台展示,实现多端口海量数据的分析。
数据中心环境可视化
利用3D仿真技术,对机房内多种设备进行建模,对设备进行实时监控以及全生命周期维护。同样为了确保数据中心机房正常运转,运维系统也具备烟雾温湿监控、动力监控、门禁等监控功能,实时监测机房内部环境,及时发现存在的问题,可远程控制系统调控运行状态。
资产与能耗管理可视化
为了解决数据中心能耗过大的问题,系统对数据中心整体环境的年度用电量、机柜租用率、楼宇IT用电量、柴油发电机、电气容量等进行实时监控并提供相关历史数据,方便管理者进行节能调整。还支持对资产准确定位,记录设备型号和状态,确保机柜高使用率,避免资源浪费,细化运维能节省约20%的总运营成本。
可视化运维管理
通过可视化管理,改变数据中心的运维模式。管理者可通过线上监控系统了解设备健康状况,可远程查看机柜的检修记录、履历信息和历史故障,为评估设备安全提供了直观的数据基础。运维人员摆脱了机械性的工作,缓解运维压力。同时也对数据中心人员分配提供了人性化的方案。
由于边缘计算和5G的大带宽所产生的巨额流量使得数据中心建设遍地开花,大规模且密集的IDC更需要精细、自动、可视化的管理。正如 Hightopo 所提供的数据中心机房可视化解决方案,帮助企业在能耗、运维、和人力资源上做到精细化管理,使其走向节能增效的发展道路。在数字经济腾飞的时代下,数据中心可视化改造更应未雨绸缪。
参考资料:官网——Web组态
网络百科——图扑软件
工信部、国家机关事务管理局、国家能源局近日联合印发《关于加强绿色数据中心建设的指导意见》(下简称《意见》),明确提出要建立健全绿色数据中心标准评价体系和能源资源监管体系,到2022年,数据中心平均能耗基本达到国际先进水平。 《意见》指出,引导大型和超大型数据中心设计电能使用效率值不高于1.4;力争通过改造使既有大型、超大型数据中心电能使用效率值不高于1.8。 基本原则 政策引领、市场主导。 充分发挥市场配置资源的决定性作用,调动各类市场主体的积极性、创造性。 更好发挥政府在规划、政策引导和市场监管中的作用,着力构建有效激励约束机制,激发绿色数据中心建设活力。 改造存量、优化增量。 建立绿色运维管理体系,加快现有数据中心节能挖潜与技术改造,提高资源能源利用效率。 强化绿色设计、采购和施工,全面实现绿色增量。 创新驱动、服务先行。 大力培育市场创新主体,加快建立绿色数据中心服务平台,完善标准和技术服务体系,推动关键技术、服务模式的创新,引导绿色水平提升。 主要目标 建立健全绿色数据中心标准评价体系和能源资源监管体系,打造一批绿色数据中心先进典型,形成一批具有创新性的绿色技术产品、解决方案,培育一批专业第三方绿色服务机构。 到2022年,数据中心平均能耗基本达到国际先进水平,新建大型、超大型数据中心的电能使用效率值达到1.4以下,高能耗老旧设备基本淘汰,水资源利用效率和清洁能源应用比例大幅提升,废旧电器电子产品得到有效回收利用。 重点任务 (一)提升新建数据中心绿色发展水平 1.强化绿色设计 加强对新建数据中心在IT设备、机架布局、制冷和散热系统、供配电系统以及清洁能源利用系统等方面的绿色化设计指导。 鼓励采用液冷、分布式供电、模块化机房以及虚拟化、云化IT资源等高效系统设计方案,充分考虑动力环境系统与IT设备运行状态的精准适配;鼓励在自有场所建设自然冷源、自有系统余热回收利用或可再生能源发电等清洁能源利用系统;鼓励应用数值模拟技术进行热场仿真分析,验证设计冷量及机房流场特性。 引导大型和超大型数据中心设计电能使用效率值不高于1.4。 2.深化绿色施工和采购 引导数据中心在新建及改造工程建设中实施绿色施工,在保证质量、安全基本要求的同时,最大限度地节约能源资源,减少对环境负面影响,实现节能、节地、节水、节材和环境保护。 严格执行《电器电子产品有害物质限制使用管理办法》和《电子电气产品中限用物质的限量要求》(GB/T)等规范要求,鼓励数据中心使用绿色电力和满足绿色设计产品评价等要求的绿色产品,并逐步建立健全绿色供应链管理制度。 (二)加强在用数据中心绿色运维和改造 1.完善绿色运行维护制度 指导数据中心建立绿色运维管理体系,明确节能、节水、资源综合利用等方面发展目标,制定相应工作计划和考核办法;结合气候环境和自身负载变化、运营成本等因素科学制定运维策略;建立能源资源信息化管控系统,强化对电能使用效率值等绿色指标的设置和管理,并对能源资源消耗进行实时分析和智能化调控,力争实现机械制冷与自然冷源高效协同;在保障安全、可靠、稳定的基础上,确保实际能源资源利用水平不低于设计水平。 2.有序推动节能与绿色化改造 有序推动数据中心开展节能与绿色化改造工程,特别是能源资源利用效率较低的在用老旧数据中心。 加强在设备布局、制冷架构、外围护结构(密封、遮阳、保温等)、供配电方式、单机柜功率密度以及各系统的智能运行策略等方面的技术改造和优化升级。 鼓励对改造工程进行绿色测评。 力争通过改造使既有大型、超大型数据中心电能使用效率值不高于1.8。 3.加强废旧电器电子产品处理 加快高耗能设备淘汰,指导数据中心科学制定老旧设备更新方案,建立规范化、可追溯的产品应用档案,并与产品生产企业、有相应资质的回收企业共同建立废旧电器电子产品回收体系。 在满足可靠性要求的前提下,试点梯次利用动力电池作为数据中心削峰填谷的储能电池。 推动产品生产、回收企业加快废旧电器电子产品资源化利用,推行产品源头控制、绿色生产,在产品全生命周期中最大限度提升资源利用效率。 (三)加快绿色技术产品创新推广 1.加快绿色关键和共性技术产品研发创新 鼓励数据中心骨干企业、科研院所、行业组织等加强技术协同创新与合作,构建产学研用、上下游协同的绿色数据中心技术创新体系,推动形成绿色产业集群发展。 重点加快能效水效提升、有毒有害物质使用控制、废弃设备及电池回收利用、信息化管控系统、仿真模拟热管理和可再生能源、分布式供能、微电网利用等领域新技术、新产品的研发与创新,研究制定相关技术产品标准规范。 2.加快先进适用绿色技术产品推广应用 加快绿色数据中心先进适用技术产品推广应用,重点包括:一是高效IT设备,包括液冷服务器、高密度集成IT设备、高转换率电源模块、模块化机房等;二是高效制冷系统,包括热管背板、间接式蒸发冷却、行级空调、自动喷淋等;三是高效供配电系统,包括分布式供能、市电直供、高压直流供电、不间断供电系统ECO模式、模块化UPS等;四是高效辅助系统,包括分布式光伏、高效照明、储能电池管理、能效环境集成监控等。 (四)提升绿色支撑服务能力 1.完善标准体系 充分发挥标准对绿色数据中心建设的支撑作用,促进绿色数据中心提标升级。 建立健全覆盖设计、建设、运维、测评和技术产品等方面的绿色数据中心标准体系,加强标准宣贯,强化标准配套衔接。 加强国际标准话语权,积极推动与国际标准的互信互认。 以相关测评标准为基础,建立自我评价、社会评价和政府引导相结合的绿色数据中心评价机制,探索形成公开透明的评价结果发布渠道。 2.培育第三方服务机构 加快培育具有公益性质的第三方服务机构,鼓励其创新绿色评价及服务模式,向数据中心提供咨询、检测、评价、审计等服务。 鼓励数据中心自主利用第三方服务机构开展绿色评测,并依据评测结果开展有实效的绿色技术改造和运维优化。 依托高等院校、科研院所、第三方服务等机构建立多元化绿色数据中心人才培训体系,强化对绿色数据中心人才的培养。 (五)探索与创新市场推动机制 鼓励数据中心和节能服务公司拓展合同能源管理,研究节能量交易机制,探索绿色数据中心融资租赁等金融服务模式。 鼓励数据中心直接与可再生能源发电企业开展电力交易,购买可再生能源绿色电力证书。 探索建立绿色数据中心技术创新和推广应用的激励机制和融资平台,完善多元化投融资体系。 保障措施 (一)加强组织领导。 工业和信息化部、国家机关事务管理局、国家能源局建立协调机制,强化在政策、标准、行业管理等方面的沟通协作,加强对地方相关工作的指导。 各地工业和信息化、机关事务、能源主管部门要充分认识绿色数据中心建设的重要意义,结合实际制定相关政策措施,充分发挥行业协会、产业联盟等机构的桥梁纽带作用,切实推动绿色数据中心建设。 (二)加强行业监管。 在数据中心重点应用领域和地区,了解既有数据中心绿色发展水平,研究数据中心绿色发展现状。 将重点用能数据中心纳入工业和通信业节能监察范围,督促开展节能与绿色化改造工程。 推动建立数据中心节能降耗承诺、信息依法公示、社会监督和违规惩戒制度。 遴选绿色数据中心优秀典型,定期发布《国家绿色数据中心名单》。 充分发挥公共机构特别是党政机关在绿色数据中心建设的示范引领作用,率先在公共机构组织开展数据中心绿色测评、节能与绿色化改造等工作。 (三)加强政策支持。 充分利用绿色制造、节能减排等现有资金渠道,发挥节能节水、环境保护专用设备所得税优惠政策和绿色信贷、首台(套)重大技术装备保险补偿机制支持各领域绿色数据中心创建工作。 优先给予绿色数据中心直供电、大工业用电、多路市电引入等用电优惠和政策支持。 加大政府采购政策支持力度,引导国家机关、企事业单位优先采购绿色数据中心所提供的机房租赁、云服务、大数据等方面服务。 (四)加强公共服务。 整合行业现有资源,建立集政策宣传、技术交流推广、人才培训、数据分析诊断等服务于一体的国家绿色数据中心公共服务平台。 加强专家库建设和管理,发挥专家在决策建议、理论指导、专业咨询等方面的积极作用。 持续发布《绿色数据中心先进适用技术产品目录》,加快创新成果转化应用和产业化发展。 鼓励相关企事业单位、行业组织积极开展技术产品交流推广活动,鼓励有条件的企业、高校、科研院所针对绿色数据中心关键和共性技术产品建立实验室或者工程中心。 (五)加强国际交流合作。 充分利用现有国际合作交流机制和平台,加强在绿色数据中心技术产品、标准制定、人才培养等方面的交流与合作,举办专业培训、技术和政策研讨会、论坛等活动,打造一批具有国际竞争力的绿色数据中心,形成相关技术产品整体解决方案。 结合“一带一路”倡议等国家重大战略,加快开拓国际市场,推动优势技术和服务走出去。 结语 据悉,在数据中心当前的后期运营,能耗是最大成本,占比超过50%。 降低能耗效率(PUE)值,一直是业界相关部门关心的重点。 工信部在2017年4月发布的《关于加强“十 三五”信息通信业节能减排工作的指导意见》中指出:“十二五”期间新建大型数据中心的能耗效率(PUE)要普遍低于1.5;到2020年,新建大型、超大型数据中心的能耗效率(PUE)值必须达到1.4 以下。 去年3月,工信部首次公布的《全国数据中心应用发展指引》中称:全国超大型数据中心平均PUE(平均电能使用效率)为1.50,大型数据中心平均PUE为1.69。 而根据“十三五规划”,到2020年,新建大型云计算数据中心PUE值将不得高于1.4。 如今,三部门联手针对绿色数据中心建设进一步提出了明确的指导意见。 在这样的大背景下,数据中心运营商如何运用新技术、新架构降低能源降耗,实现数据中心的绿色发展,将成为行业的关注热点,与此同时,节能降耗的大趋势之下,也将带来更多的市场机遇。
世界能源委员会1995年对能源效率的定义为:减少提供同等能源服务的能源投入。 对于能耗居高不下的数据中心,研究提高能源效率具有深远的社会效益和经济效益。 除了能源效率之外,数据中心还有多项其他性能指标,按照国际标准组织ISO的定义统称为关键性能指标,或称为关键绩效指标,研究这些指标对于数据中心同样具有十分重要的意义。 在已经颁布的数据中心性能指标中最常见的是电能使用效率PUE。 在我国,PUE不但是数据中心研究、设计、设备制造、建设和运维人员最为熟悉的数据中心能源效率指标,也是政府评价数据中心工程性能的主要指标。 除了PUE之外,2007年以后还出台了多项性能指标,虽然知名度远不及PUE,但是在评定数据中心的性能方面也有一定的参考价值,值得关注和研究。 PUE在国际上一直是众说纷纭、莫衷一是的一项指标,2015年ASHRAE公开宣布,ASHRAE标准今后不再采用PUE这一指标,并于2016年下半年颁布了ASHRAE 90.4标准,提出了新的能源效率;绿色网格组织(TGG)也相继推出了新的能源性能指标。 对PUE和数据中心性能指标的讨论一直是国际数据中心界的热门议题。 鉴于性能指标对于数据中心的重要性、国内与国际在这方面存在的差距,以及在采用PUE指标过程中存在的问题,有必要对数据中心的各项性能指标,尤其是对PUE进行深入地研究和讨论。 1.性能指标 ISO给出的关键性能指标的定义为:表示资源使用效率值或是给定系统的效率。 数据中心的性能指标从2007年开始受到了世界各国的高度重视,相继推出了数十个性能指标。 2015年之后,数据中心性能指标出现了较大变化,一系列新的性能指标相继被推出,再度引发了国际数据中心界对数据中心的性能指标,尤其是对能源效率的关注,并展开了广泛的讨论。 2.PUE 2.1PUE和衍生效率的定义和计算方法 2.1.1电能使用效率PUE TGG和ASHRAE给出的PUE的定义相同:数据中心总能耗Et与IT设备能耗之比。 GB/T.3—2016给出的EEUE的定义为:数据中心总电能消耗与信息设备电能消耗之间的比值。 其定义与PUE相同,不同的是把国际上通用的PUE(powerusage effectiveness)改成了EEUE(electricenergy usage effectiveness)。 国内IT界和暖通空调界不少专业人士对于这一变更提出了不同的看法,根据Malone等人最初对PUE的定义,Et应为市电公用电表所测量的设备总功率,这里的Et就是通常所说的数据中心总的设备耗电量,与GB/T.3—2016所规定的Et应为采用电能计量仪表测量的数据中心总电能消耗的说法相同。 笔者曾向ASHRAE有关权威人士咨询过,他们认为如果要将“power”用“electricenergy”来替代,则采用“electricenergy consumption”(耗电量)更准确。 显然这一变更不利于国际交流。 虽然这只是一个英文缩写词的变更,但因为涉及到专业术语,值得商榷。 ISO给出的PUE的定义略有不同:计算、测量和评估在同一时期数据中心总能耗与IT设备能耗之比。 2.1.2部分电能使用效率pPUE TGG和ASHRAE给出的pPUE的定义相同:某区间内数据中心总能耗与该区间内IT设备能耗之比。 区间(zone)或范围( boundary)可以是实体,如集装箱、房间、模块或建筑物,也可以是逻辑上的边界,如设备,或对数据中心有意义的边界。 ISO给出的pPUE的定义有所不同:某子系统内数据中心总能耗与IT设备总能耗之比。 这里的“子系统”是指数据中心中某一部分耗能的基础设施组件,而且其能源效率是需要统计的,目前数据中心中典型的子系统是配电系统、网络设备和供冷系统。 2.1.3设计电能使用效率dPUE ASHRAE之所以在其标准中去除了PUE指标,其中一个主要原因是ASHRAE认为PUE不适合在数据中心设计阶段使用。 为此ISO给出了设计电能使用效率dPUE,其定义为:由数据中心设计目标确定的预期PUE。 数据中心的能源效率可以根据以下条件在设计阶段加以预测:1)用户增长情况和期望值;2)能耗增加或减少的时间表。 dPUE表示由设计人员定义的以最佳运行模式为基础的能耗目标,应考虑到由于数据中心所处地理位置不同而导致的气象参数(室外干球温度和湿度)的变化。 2.1.4期间电能使用效率iPUE ISO给出的期间电能使用效率iPUE的定义为:在指定时间测得的PUE,非全年值。 2.1.5电能使用效率实测值EEUE-R GB/T.3—2016给出的EEUE-R的定义为:根据数据中心各组成部分电能消耗测量值直接得出的数据中心电能使用效率。 使用EEUE-R时应采用EEUE-Ra方式标明,其中a用以表明EEUE-R的覆盖时间周期,可以是年、月、周。 2.1.6电能使用效率修正值EEUE-X GB/T.3—2016给出的EEUE-X的定义为:考虑采用的制冷技术、负荷使用率、数据中心等级、所处地域气候环境不同产生的差异,而用于调整电能使用率实测值以补偿其系统差异的数值。 2.1.7采用不同能源的PUE计算方法 数据中心通常采用的能源为电力,当采用其他能源时,计算PUE时需要采用能源转换系数加以修正。 不同能源的转换系数修正是评估数据中心的一次能源使用量或燃料消耗量的一种方法,其目的是确保数据中心购买的不同形式的能源(如电、天然气、冷水)可以进行公平地比较。 例如,如果一个数据中心购买当地公用事业公司提供的冷水,而另一个数据中心采用由电力生产的冷水,这就需要有一个系数能使得所使用的能源在相同的单位下进行比较,这个系数被称为能源转换系数,它是一个用来反映数据中心总的燃料消耗的系数。 当数据中心除采用市电外,还使用一部分其他能源时,就需要对这种能源进行修正。 2.1.8PUE和EEUE计算方法的比较 如果仅从定义来看,PUE和EEUE的计算方法十分简单,且完全相同。 但是当考虑到计算条件的不同,需要对电能使用效率进行修正时,2种效率的计算方法则有所不同。 1)PUE已考虑到使用不同能源时的影响,并给出了修正值和计算方法;GB/T.3—2016未包括可再生能源利用率,按照计划这一部分将在GB/T.4《可再生能源利用率》中说明。 2)PUE还有若干衍生能源效率指标可供参考,其中ISO提出的dPUE弥补了传统PUE的不足;EEUE则有类似于iPUE的指标EEUE-Ra。 3)EEUE分级(见表1)与PUE分级(见表2)不同。 4)EEUE同时考虑了安全等级、所处气候环境、空调制冷形式和IT设备负荷使用率的影响。 ASHRAE最初给出了19个气候区的PUE最大限值,由于PUE已从ASHRAE标准中去除,所以目前的PUE未考虑气候的影响;ISO在计算dPUE时,要求考虑气候的影响,但是如何考虑未加说明;PUE也未考虑空调制冷形式和负荷使用率的影响,其中IT设备负荷率的影响较大,应加以考虑。 2.2.PUE和EEUE的测量位置和测量方法 2.2.1PUE的测量位置和测量方法 根据IT设备测点位置的不同,PUE被分成3个类别,即PUE1初级(提供能源性能数据的基本评价)、PUE2中级(提供能源性能数据的中级评价)、PUE3高级(提供能源性能数据的高级评价)。 PUE1初级:在UPS设备输出端测量IT负载,可以通过UPS前面板、UPS输出的电能表以及公共UPS输出总线的单一电表(对于多个UPS模块而言)读取。 在数据中心供电、散热、调节温度的电气和制冷设备的供电电网入口处测量进入数据中心的总能量。 基本监控要求每月至少采集一次电能数据,测量过程中通常需要一些人工参与。 PUE2中级:通常在数据中心配电单元前面板或配电单元变压器二次侧的电能表读取,也可以进行单独的支路测量。 从数据中心的电网入口处测量总能量,按照中等标准的检测要求进行能耗测量,要求每天至少采集一次电能数据。 与初级相比,人工参与较少,以电子形式采集数据为主,可以实时记录数据,预判未来的趋势走向。 PUE3高级:通过监控带电能表的机架配电单元(即机架式电源插座)或IT设备,测量数据中心每台IT设备的负载(应该扣除非IT负载)。 在数据中心供电的电网入口处测量总能量,按照高标准的检测要求进行能耗测量,要求至少每隔15min采集一次电能数据。 在采集和记录数据时不应该有人工参与,通过自动化系统实时采集数据,并支持数据的广泛存储和趋势分析。 所面临的挑战是以简单的方式采集数据,满足各种要求,最终获取数据中心的各种能量数据。 对于初级和中级测量流程,建议在一天的相同时间段测量,数据中心的负载尽量与上次测量时保持一致,进行每周对比时,测量时间应保持不变(例如每周周三)。 2.2.2EEUE的测量位置和测量方法 1)Et测量位置在变压器低压侧,即A点; 2)当PDU无隔离变压器时,EIT测量位置在UPS输出端,即B点; 3)当PDU带隔离变压器时,EIT测量位置在PDU输出端,即C点; 4)大型数据中心宜对各主要系统的耗电量分别计量,即E1,E2,E3点; 5)柴油发电机馈电回路的电能应计入Et,即A1点; 6)当采用机柜风扇辅助降温时,EIT测量位置应为IT负载供电回路,即D点; 7)当EIT测量位置为UPS输出端供电回路,且UPS负载还包括UPS供电制冷、泵时,制冷、泵的能耗应从EIT中扣除,即扣除B1和B2点测得的电量。 2.2.3PUE和EEUE的测量位置和测量方法的差异 1)PUE的Et测量位置在电网输入端、变电站之前。 而GB/T.3—2016规定EEUE的Et测量位置在变压器低压侧。 数据中心的建设有2种模式:①数据中心建筑单独设置,变电站自用,大型和超大型数据中心一般采用这种模式;②数据中心置于建筑物的某一部分,变电站共用,一般为小型或中型数据中心。 由于供电局的收费都包括了变压器的损失,所以为了准确计算EEUE,对于前一种模式,Et测量位置应该在变压器的高压侧。 2)按照2.2.2节第6条,在计算EIT时,应减去机柜风机的能耗。 应该指出的是,机柜风机不是辅助降温设备,起到降温作用的是来自空调设备的冷空气,降温的设备为空调换热器,机柜风机只是起到辅助传输冷风的作用,因此机柜风机不应作为辅助降温设备而计算其能耗。 在GB/T.3征求意见时就有人提出:机柜风机的能耗很难测量,所以在实际工程中,计算PUE时,EIT均不会减去机柜风机的能耗。 在美国,计算PUE时,机柜风机的能耗包括在EIT中。 3)PUE的测点明显多于GB/T.3—2016规定的EEUE的测点。 2.3.PUE存在的问题 1)最近两年国内外对以往所宣传的PUE水平进行了澄清。 我国PUE的真实水平也缺乏权威调查结果。 GB/T.3—2016根据国内实际状况,将一级节能型数据中心的EEUE放宽到1.0~1.6,其上限已经超过了国家有关部委提出的绿色数据中心PUE应低于1.5的要求,而二级比较节能型数据中心的EEUE规定为1.6~1.8,应该说这样的规定比较符合国情。 2)数据中心总能耗Et的测量位置直接影响到PUE的大小,因此应根据数据中心建筑物市电变压器所承担的荷载组成来决定其测量位置。 3)应考虑不同负荷率的影响。 当负荷率低于30%时,不间断电源UPS的效率会急剧下降,PUE值相应上升。 对于租赁式数据中心,由于用户的进入很难一步到位,所以数据中心开始运行后,在最初的一段时间内负荷率会较低,如果采用设计PUE,也就是满负荷时的PUE来评价或验收数据中心是不合理的。 4)数据中心的PUE低并非说明其碳排放也低。 完全采用市电的数据中心与部分采用可再生能源(太阳能发电、风电等),以及以燃气冷热电三联供系统作为能源的数据中心相比,显然碳排放指标更高。 数据中心的碳排放问题已经引起国际上广泛地关注,碳使用效率CUE已经成为数据中心重要的关键性能指标,国内对此的关注度还有待加强。 5)GB/T.3—2016规定,在计算EIT时,应减去机柜风机的耗能。 关于机柜风机的能耗是否应属于IT设备的能耗,目前国内外有不同的看法,其中主流观点是服务器风机的能耗应属于IT设备的能耗,其原因有二:一是服务器风机是用户提供的IT设备中的一个组成部分,自然属于IT设备;二是由于目前服务器所采用的风机基本上均为无刷直流电动机驱动的风机(即所谓EC电机),风机的风量和功率随负荷变化而改变,因此很难测量风机的能耗。 由于数据中心风机的设置对PUE的大小影响很大,需要认真分析。 从实际使用和节能的角度出发,有人提出将服务器中的风机取消,而由空调风机取代。 由于大风机的效率明显高于小风机,且初投资也可以减少,因此这种替代方法被认为是一个好主意,不过这是一个值得深入研究的课题。 6)国内相关标准有待进一步完善。 GB/T.3—2016《数据中心资源利用第3部分:电能能效要求和测量方法》的发布,极大地弥补了国内标准在数据中心电能能效方面的不足;同时,GB/T.3—2016标准颁布后,也引起了国内学术界和工程界的热议。 作为一个推荐性的国家标准如何与已经颁布执行的强制性行业标准YD 5193—2014《互联网数据中心(IDC)工程设计规范》相互协调?在标准更新或升级时,包括内容相似的国际标准ISOIEC -2-2016在内的国外相关标准中有哪些内容值得借鉴和参考?标准在升级为强制性国家标准之前相关机构能否组织就其内容进行广泛的学术讨论?都是值得考虑的重要课题。 ASHRAE在发布ASHRAE90.4标准时就说明,数据中心的标准建立在可持续发展的基础上,随着科学技术的高速发展,标准也需要不断更新和创新。 7)PUE的讨论已经相当多,事实上作为大数据中心的投资方和运营方,更关心的还是数据中心的运行费用,尤其是电费和水费。 目前在数据中心关键性能指标中尚缺乏一个经济性指标,使得数据中心,尤其是大型数据中心和超大型数据中心的经济性无法体现。 2.4.PUE的比较 不同数据中心的PUE值不应直接进行比较,但是条件相似的数据中心可以从其他数据中心所提供的测量方法、测试结果,以及数据特性的差异中获益。 为了使PUE比较结果更加公平,应全面考虑数据中心设备的使用时间、地理位置、恢复能力、服务器可用性、基础设施规模等。 3.其他性能指标 3.1.ASHRAE90.4 ASHRAE90.4-2016提出了2个新的能源效率指标,即暖通空调负载系数MLC和供电损失系数ELC。 但这2个指标能否为国际IT界接受,还需待以时日。 3.1.1暖通空调负载系数MLC ASHRAE对MLC的定义为:暖通空调设备(包括制冷、空调、风机、水泵和冷却相关的所有设备)年总耗电量与IT设备年耗电量之比。 3.1.2供电损失系数ELC ASHRAE对ELC的定义为:所有的供电设备(包括UPS、变压器、电源分配单元、布线系统等)的总损失。 3.2.TGG白皮书68号 2016年,TGG在白皮书68号中提出了3个新的能源效率指标,即PUE比(PUEr)、IT设备热一致性(ITTC)和IT设备热容错性(ITTR),统称为绩效指标(PI)。 这些指标与PUE相比,不但定义不容易理解,计算也十分困难,能否被IT界接受,还有待时间的考验。 3.2.1PUE比 TGG对PUEr的定义为:预期的PUE(按TGG的PUE等级选择)与实测PUE之比。 3.2.2IT设备热一致性ITTC TGG对ITTC的定义为:IT设备在ASHRAE推荐的环境参数内运行的比例。 服务器的进风温度一般是按ASHRAE规定的18~27℃设计的,但是企业也可以按照自己设定的服务器进风温度进行设计,在此进风温度下,服务器可以安全运行。 IT设备热一致性表示符合ASHRAE规定的服务器进风温度的IT负荷有多少,以及与总的IT负荷相比所占百分比是多少。 例如一个IT设备总负荷为500kW的数据中心,其中满足ASHRAE规定的服务器进风温度的IT负荷为450kW,则该数据中心的IT设备热一致性为95%。 虽然TGG解释说,IT设备热一致性涉及的只是在正常运行条件下可接受的IT温度,但是IT设备热一致性仍然是一个很难计算的能源效率,因为必须知道:1)服务器进风温度的范围,包括ASHRAE规定的和企业自己规定的进风温度范围;2)测点位置,需要收集整个数据中心服务器各点的进风温度,由人工收集或利用数据中心基础设施管理(DCIM)软件来统计。 3.2.3IT设备热容错性ITTR TGG对ITTR的定义为:当冗余制冷设备停机,或出现故障,或正常维修时,究竟有多少IT设备在ASHRAE允许的或建议的送风温度32℃下送风。 按照TGG的解释,ITTR涉及的只是在出现冷却故障和正常维修运行条件下可接受的IT温度,但是ITTR也是一个很难确定的参数。 ITTR的目的是当冗余冷却设备停机,出现冷却故障或在计划维护活动期间,确定IT设备在允许的入口温度参数下(<32℃)运行的百分比,以便确定数据中心冷却过程中的中断或计划外维护的性能。 这个参数很难手算,因为它涉及到系统操作,被认为是“计划外的”条件,如冷却单元的损失。 3.3.数据中心平均效率CADE 数据中心平均效率CADE是由麦肯锡公司提出,尔后又被正常运行时间协会(UI)采用的一种能源效率。 CADE提出时自认为是一种优于其他数据中心能源效率的指标。 该指标由于被UI所采用,所以直到目前仍然被数量众多的权威著作、文献认为是可以采用的数据中心性能指标之一。 但是笔者发现这一性能指标的定义并不严谨,容易被误解。 另外也难以测量和计算。 该指标的提出者并未说明IT资产效率如何测量,只是建议ITAE的默认值取5%,所以这一指标迄今为止未能得到推广应用。 3.4.IT电能使用效率ITUE和总电能使用效率TUE 2013年,美国多个国家级实验室鉴于PUE的不完善,提出了2个新的能源效率——总电能使用效率TUE和IT电能使用效率ITUE。 提出ITUE和TUE的目的是解决由于计算机技术的发展而使得数据中心计算机配件(指中央处理器、内存、存储器、网络系统,不包括IT设备中的电源、变压器和机柜风机)的能耗减少时,PUE反而增加的矛盾。 但是这2个性能指标也未得到广泛应用。 3.5.单位能源数据中心效率DPPE 单位能源数据中心效率DPPE是日本绿色IT促进协会(GIPC)和美国能源部、环保协会、绿色网格,欧盟、欧共体、英国计算机协会共同提出的一种数据中心性能指标。 GIPC试图将此性能指标提升为国际标准指标。 3.6.水利用效率WUE TGG提出的水利用效率WUE的定义为:数据中心总的用水量与IT设备年耗电量之比。 数据中心的用水包括:冷却塔补水、加湿耗水、机房日常用水。 根据ASHRAE的调查结果,数据中心基本上无需加湿,所以数据中心的用水主要为冷却塔补水。 采用江河水或海水作为自然冷却冷源时,由于只是取冷,未消耗水,可以不予考虑。 民用建筑集中空调系统由于总的冷却水量不大,所以判断集中空调系统的性能时,并无用水量效率之类的指标。 而数据中心由于全年制冷,全年的耗水量居高不下,已经引起了国内外,尤其是水资源贫乏的国家和地区的高度重视。 如何降低数据中心的耗水量,WUE指标是值得深入研究的一个课题。 3.7.碳使用效率CUE TGG提出的碳使用效率CUE的定义为:数据中心总的碳排放量与IT设备年耗电量之比。 CUE虽然形式简单,但是计算数据中心总的碳排放量却很容易出错。 碳排放量应严格按照联合国气象组织颁布的计算方法进行计算统计。
数据中心综合布线采用结构化,高密度,合理的线缆路由管理减少对冷热通道的阻碍,光铜产品的选取大幅提升网络带宽,这些措施能为节能降耗做出相关大的贡献,从而提升数据中心的能效比。 根据在众多构建绿色数据中心的经验,综合布线的合理规划和布局会节省数据中心2-3%的电力。 这主要取决于如下的几点:1、合理规划数据中心合理有效的线缆布局决定了网络物理层的基础,对于节约电能、节能降耗起到重要作用。 要据TIA-942标准,将数据中心划分成MDA,HDA,EDA,ZDA等几大区域。 从MDA到HAD采用OM3预连接光缆,从而优化主配线区到列头柜之间的连接。 解决从主交换路由到每一列机柜的列头柜二层交换机的连接。 每列列头柜交换机及KVM设备通过絧缆或光缆跳线再连接到每一个服务器上去。 它的优点是节省从主交换机到用户服务器线缆的数量,从而减少对机房冷热通道的阻隔。 目前,大多数数据中心内整体设计所支持的数据传输速率为1Gb/s。 但是,根据网络和云计算的发展普遍共识是,传输速率会向10Gb/s推进。 可以肯定的是,在未来的3~5年的时间里,支持10Gb/s传输的链路会成为数据中心的主流。 基于此种情况,ISO以及TIA制定了关于光纤和铜缆支持10Gb以太网传输的标准。 数据中心的规划建设应充分考虑到适用性,立足现有需求,并兼顾未来的拓展。 2.高密度,高带宽提升数据中心基础设施的利用率在相同的数据中心面积基础上,通过提高数据中心密度来达到有效的利用,在网络物理连接层面主要体现在高密度线缆管理方面。 角形配线架无需增加理线设备;高密度光纤配线架可大幅提升光纤配线密度;桥架式光铜混合配线架使用于机柜上方可支持288芯光纤,减少柜内空间占用;MPO连接器是一种多芯的光纤连接器,像IEC-7,TIA/EIA568C.3等标准中都有MPO连接器的规定。 MPO最近几年也广泛应用于数据中心。 数据中心采用MPO的好处在于密度特别高,至少是普通LC连接器的3倍以上。 以上这些新产品技术的应用,可以有效的节约40%以上的机柜空间,提升数据中心密度。 合理的数据中心布局,对于光铜缆路由的合理设计可大量节省线缆投入。 3.优质的产品选型,精准的制造工艺布线系统的绿色节能还体现在散热性上,线缆的散热性好了,可以节约大量的机房空调所消耗的电量。 直径更小的Cat6A万兆屏蔽电缆和直径更小的光纤解决方案意味着对制冷系统效率的影响被减到最低,屏蔽解决方案因为更低的信噪比需求可以有效地减少服务器设备驱动屏蔽铜缆网络所需的功率消耗,光纤布线系统相对高速铜缆系统需要消耗的功率更低。 绿色数据中心布线系统较之有源的网络设备,将持续工作15年,甚至更久。 优质的产品,精准的制造工艺是延长综合布线系统寿命及稳定的重要保证。 延长整体系统的使用寿命,也是减少重复投资,绿色节能的重要体现。 4.高性能、高传输,精益求精,精细化管理与实施根据摩尔定律所确定的计算机设备热负荷规律,数据中心的配置无法实现有效的管理。 数据中心环境需要考虑所安装的解决方案及如何安装和部署这些解决方案。 在最近10年中,各公司的数据中心和楼宇配线设施中都大量地增加了网络设备数目,这些设备在增加关键性功能的同时,却使得数据中心的管理变得复杂。 在全球发展放缓经济环境中,投资方都在期望简化自己数据中心管理,以创建一个安全、易于管理且能够根据不可预知的工作负荷和业务需求的变化灵活调整的网络基础架构。 采用良好的布线系统管理软件有利于系统的可维护性,保持布线系统最大的效率,而不会因为布线管理混乱所产生许多没有利用的链路产生不必要的能源消耗。 总结最后,随着全球气候日趋变暖和能源日趋紧张、能源成本不断上涨,数据中心正面临着降低能耗、提高资源利用率、节约成本的严峻挑战,而绿色也成为未来数据中心的必然发展趋势。 在绿色数据中心建设过程中,绿色环保和绿色节能是最重要的两个方面。 数据中心内不断增加的新需求对绿色布线的要求呈动态的多样性,在规划选择综合布线系统时,需要在带宽、灵活性、可扩展性和成本等要素之间寻求平衡。 综合布线作为基础系统在更小的空间内提供更高的带宽,作为绿色无源系统尽可能的降低能耗与增加环保意识,已成为当今许多数据中心绿色布线部署的新要求。
通过数据中心的规划、建设和运维,从数据中心生命周期和数据中心可持续发展的六个基本要素出发,全面阐述了数据中心建设、管理的科学体系和方法论,以及企业级数据中心的评价体系.具体可以参考《数据中心建设与管理指南》一书,有详细介绍。 书的目录如下:目录:第1章数据中心发展现状及趋势 1.1国内数据中心现状 1.1.1信息化推动中国数据中心快速发展 1.1.2现有数据中心存在的问题 1.2数据中心发展趋势 1.2.1数据中心业务发展历程 1.2.2新一代数据中心的发展趋势 第2章数据中心可持续发展能力 2.1什么是数据中心可持续发展能力 2.2数据中心的生命周期 2.2.1数据中心项目全生命周期 2.2.2数据中心全生命周期预测分析 2.3数据中心可持续发展能力分析 2.3.1数据中心可持续发展影响因素 2.3.2数据中心可持续发展评价 第3章数据中心规划 3.1数据中心业务定位 3.2数据中心建设规模 3.3数据中心建设标准 3.4数据中心指标体系 3.5数据中心选址 3.6数据中心技术要求 3.6.1总体设计理念 3.6.2总平面布置要求 3.6.3建筑工程要求 3.6.4供配电要求 3.6.5空调暖通要求 3.6.6消防、给排水要求 3.6.7建筑智能化要求 第4章数据中心的节能 4.1数据中心的能耗审计 4.2数据中心能耗测量指标 4.2.1国内外主要绿色建筑评价体系 4.2.2数据中心能源效率指标 4.2.3绿色数据中心能效评价要素 4.3数据中心节能目标 4.4节能技术方案举例 4.4.1建筑群体的节能 4.4.2机房管理与节能 4.4.3IT系统管理与节能 第5章数据中心建设管理 5.1数据中心业主方设计管理 5.1.1工程设计的阶段划分 5.1.2设计管理目标和中心任务 5.1.3设计管理模式与选择 5.1.4设计管理内容 5.1.5设计阶段的管理 5.1.6工程设计过程的管理 5.2数据中心工程建设管理 5.2.1确定数据中心的建设管理模式 5.2.2项目建设流程 5.2.3施工管理 5.3数据中心建设施工测试与验收 5.3.1中间验收 5.3.2系统测试 5.3.3竣工验收 第6章数据中心专业化运维 6.1数据中心运维管理概述 6.1.1运维目标 6.1.2运维对象 6.1.3运维要求 6.2数据中心运维管理框架 6.2.1运维管理架构4Ps概述 6.2.2运维管理的人员要求 6.2.3运维管理的流程要求 6.2.4运维管理的信息化要求 6.3数据中心运维管理测量 6.3.1运维管理成熟度的评估 6.3.2运维管理认证的意义 6.3.3运维管理标准介绍 6.4数据中心运维管理提升 6.4.1建立可持续改进的运维管理 6.4.2建立多重符合性的运维管理 6.4.3建立高度自动化的运维管理 第7章数据中心成本分析 7.1一次性投入成本分析 7.1.1新建数据中心 7.1.2改建数据中心 7.2长期运营成本分析 7.3数据中心建设及运营案例介绍 7.3.1项目概况 7.3.2主要技术经济指标 7.3.3一次性投入成本情况 7.3.4长期运营成本情况 第8章数据中心建设模式分析 8.1建设模式分析 8.2国内外数据中心建设模式现状及趋势 第9章数据中心与信息系统灾难恢复 9.1数据中心是信息系统灾难恢复的载体 9.2数据中心的灾难恢复策略 9.3灾备中心对数据中心的特殊要求 9.3.1选址要求 9.3.2基础设施要求 9.3.3运维管理要求 9.4灾难恢复国家和行业标准规范 第10章企业级数据中心评价体系 10.1企业级数据中心评价基本原则 10.2企业级数据中心评价方法论和指标体系
IDC全称为Internet target=_blank>
全球IDC行业建设现状:向着大型化、集约化发展
2010年以来全球数据中心平稳增长,从2017年开始,伴随着大型化、集约化的发展,全球数据中心数量开始缩减。据Gartner统计,截至2020年数据中心共计42.2万个,初步核算2021年全球数据中心数量进一步下降,在41万个左右。
以超大规模运营商的大型数据中心数量角度来看,随着行业集中度的逐步提升,全球超大型数据中心数量总体增长。据Synergy Research Group的最新数据,截至2021年超大规模提供商运营的大型数据中心总数增加到700个左右,较2020年同比增长17.25%。根据Synergy Research Group最新预测,凭借目前已知的314个未来新超大规模数据中心的规划,运营数据中心的安装基数将在三年内突破1000个大关,并在此后继续快速增长。
注:2021年数据截止2021Q3。
全球IDC行业市场规模体量:数据量的爆发增长带动市场规模发展
随着物联网、电子政务、智慧城市等领域的发展以及云计算的发展也将进一步推动IDC领域的发展。依据IDC发布的《数据时代2025》报告,随着5G、物联网的发展,2010-2021年数据呈现爆发式增长状态,2020年全球数据量为60ZB,初步统计2021年达到70ZB;预计2025年全球数据量将达到175ZB。
数据量的爆发式增长使得市场对IDC行业愈发青睐,据中国信通院的数据显示,2017-2021年间,全球IDC市场规模均保持正增长,且年均增速在10%左右。2021年全球IDC行业市场规模为679.3亿美元,同比增长9.9%。
全球IDC行业市场前景预测:即将迎来其新一轮的发展机遇
可以预见,在未来几年,IDC产业将迎来其新一轮的发展机遇。此外,随着网络系统日趋复杂,伴随网络的带宽逐步提高,用于网络维护的成本投资逐步增加,网络管理难度也在日益加大,在这种情况下,以资源外包的网络服务方式逐渐受到企业重视,并取得长足的发展。另外,各国政府加大了对电信宽带的投资力度,促进电信和互联网的融合。根据中国信通院预测,2022年全球ID行业市场收入将达746.5亿美元,增速总体保持平稳,2022-2027年年复合增长率在10%左右,到2027年行业规模将超过1200亿美元。
—— 更多本行业研究分析详见前瞻产业研究院《中国IDC(互联网数据中心)市场前瞻与投资战略规划分析报告》
本文地址:http://www.hyyidc.com/article/24733.html