好有缘导航网

行业标准数据中心:降低能耗,实现可持续运营 (行业标准数据库)


文章编号:24684 / 分类:互联网资讯 / 更新时间:2024-06-13 18:31:35 / 浏览:

随着数据量的不断增长,对数据中心的需求也在不断增加。数据中心也因其高能耗而受到批评。为了解决这一问题,行业标准数据中心(ISDC)应运而生。

ISDC 是由美国国家标准与技术研究院(NIST)建立的一组标准,旨在提高数据中心的能效。这些标准涵盖了数据中心各个方面的设计和运营,包括:

  • 设施设计
  • 冷却系统
  • 供电系统
  • 服务器和存储设备
  • 管理和监控
行业标准数据中心降低能耗,实现可持续运营

通过满足这些标准,ISDC 可以显著降低能耗。例如,根据 NIST 的研究,符合 ISDC 的数据中心比传统数据中心平均节能 25%。

节约能源的优势

ISDC 带来的节能优势不仅对环境有益,而且还能降低数据中心的运营成本。以下是一些关键好处:
  • 减少电费: 能耗降低意味着电费

第九届数据中心标准峰会举行,腾讯数据中心智能化与未来探索

腾讯数据中心上海技术专场

腾讯云副总裁沈可在峰会致辞中表示,在“科技向善”的使命驱使下,腾讯数据中心通过技术升级和生态构筑,推出了智维全新产品体系,此次发布的新产品不仅在腾讯自有业务中得到了应用和验证,也充分考虑了来自市场的需求变化,为未来的碳中和能源管理做好了准备。

打造全新产品体系,覆盖横向场景与垂直领域

腾讯数据中心结合当前的数字经济发展趋势,推出了全面升级的智维全新产品体系,不仅覆盖了不同阶段的自动化运营场景,还有针对重点垂直领域深入发力。

在自动化运营方面,腾讯数据中心发布了智维平台的标准版、开源定制版以及集群管理版。能够满足不同阶段、不同规模数据中心的的自动化运营管理需求,帮助客户根据业务场景快速实现数据中心自动化运营管理升级,助力数据中心行业和用户实现绿色转型。

在重点领域,推出了面向数据中心动力环境监测场景的腾讯智维动环平台,面向数据中心无人值守场景的腾讯觅踪平台,以及面向碳中和场景的腾讯智维碳管理平台。其中,腾讯智维动环平台通过重新定义标准和架构,实现了即插即用,数据快、准、稳,以及贴近业务需求的目标,目前已经在TB园区批量应用。

看见智能化,产品设计与创新的深入探索

本次腾讯发布的全新产品,通过设计与创新,让智能化在实践中“被看见”。腾讯数据中心智维产品专家史蕾表示,腾讯新一代智维平台针对业务场景全流程的产品体系闭环设计,利用先进技术与场景结合,同时建立数字化的度量体系。不仅实现了重要场景的智能化闭环,也能够支持规模化数据中心的集中管理。未来也可以为数据中心的无人化、绿色低碳等重要发展方向提供支撑。

腾讯智维的智能化发展道路一方面是基于自身对运营自动化的不断追求,同时也离不开行业伙伴的的协同深耕。腾讯数据中心智维产品专家李欣表示,“腾讯在构建相应的产品能力之外,也在不断完善整个商业闭环,从最初的“招募供应商”,到现在寻找“彼此信任的战友“,在销售、方案设计、产品交付、运营、开发等环节实现赋能伙伴,并形成矩阵式的伙伴阵型。

智能化的支撑,腾讯数据中心的技术实践与创新

坚持产品化实践,为腾讯数据中心的智能化道路提供了有效支撑。腾讯数据中心规划设计专家曾宪龙表示,“腾讯的产品化数据中心在设计过程中陆续制定了功能分区相对独立、易复制扩展、设备就近、接口通用等原则;在标准化设计过程中也不断推进技术下沉,覆盖到电缆乃至模块的结构框架等细节。”??随着产品化数据中心实践的不断推进,再搭配上最新的智维系统,整个数据中心的设计、建设、运营的效率都得到了有效提升。

重新定义标准,腾讯智维动环平台全面维护数据中心的安全与稳定。动环系统作为数据中心动力基础设施和运行环境健康监控系统,关系着数据中心的安全和稳定。据腾讯数据中心弱电技术负责人颜小云介绍,“腾讯智维动环平台通过物联网技术和硬件接口技术的综合应用,能够实现监测数据的秒采、秒存、秒算,且在3秒以内能够将底层告警上传平台呈现,并且已经在腾讯数据中心园区逐步应用。”腾讯智维动环在无效告警数量控制,以及数据处理和传输速度上目前都处于业内领先的地位。

探寻“自维保模式”,腾讯自维保满足数据中心海量基础设施运维需求。随着腾讯云各项业务在全球范围内的推进,目前在全球已设立了100多个规模IDC,服务器总量超过100万台。腾讯数据中心运营服务经理张曦表示,腾讯自2017年起开始尝试探索自维保模式,到2021年已初步搭建起一套可满足海量IDC基础设施运维需求的自维保体系,实现了集约化服务管理,高质量服务交付,以及运维成本寻优。此外腾讯还将持续加强自维保能力建设,继续拓展基础设施自维保广度与深度。

随着数据中心体量和交付数量的高速增长,腾讯已经构建出一套具有腾讯特色的技术保障体系。腾讯数据中心运营技术负责人张海涛表示,“腾讯技术保障体系可以从系统层面最大化确保腾讯数据中心全链条质量。”??同时,腾讯数据中心也在着眼未来,重点关注风光储及综合能源的使用、绿色节能技术的潜在风险隐患发现应对、人工智能和人的技能平衡协调发展、定制设备等领域,为构建技术更为复杂、规模更加庞大的数据中心技术保障体系积极准备,以应对超大规模数据中心和客户定制数据中心的发展趋势。

聚焦安全管理,探索数据中心“无人值守”之路

随着数据中心行业的快速发展,无人值守将是新的趋势。此外,不少机房在规模逐步扩大的同时,选址远离核心城市,这都导致数据中心面临的安全管理挑战日益严峻。

腾讯安全平台部AI算法专家黄湘琦表示,腾讯数据中心在探索未来无人值守机房的道路上早有布局,并拥有多年在自有大规模机房的部署实施经验。本次全新升级的腾讯觅踪由IDC平台部、安全平台部、网络平台部联手打造,可通过机器视觉AI技术和物联网技术实现对园区内活动人员的实时追踪;通过端到端的线上人员管理系统实现园区进出流程的全面电子化;并通过自研高性能的视频分发服务、高精度物联网定位技术、针对数据中心场景特别优化的H5图形渲染引擎等核心技术的加持,朝着无人值守的方向持续前行。

践行双碳政策,面向数据中心的绿色未来

“双碳”是我国的国家战略和重要承诺。腾讯数据中心绿能与双碳负责人梁家启在主题演讲中重点介绍了腾讯数据中心在碳中和方面的思考和实践。他表示,“腾讯多年积累的底层绿色技术架构体系已经为零碳数据中心做了良好的技术底座。未来,腾讯也规划了零碳IDC体系,包括园区内外风电,光伏,储能,余热回收,三联供等的集中配置;以绿电市场化采购和绿色运营为辅助,以智维能源管理作为支撑,提高森林碳汇,海洋碳汇,以及与CCUS等碳相关技术的投资比例。通过打造可持续发展的数据中心,为社会提供绿色低碳并且可持续的算力。”

数据中心要实现能源与碳的智能管理,关键核心就是要实现系统自动化建设。腾讯数据中心智维产品专家李霏表示,“腾讯智维能够帮助数据中心实现标准化的自动采集和数字建模,新一代智维碳管理平台所覆盖的节能减排方案也做到了广泛而且全面,可以帮助数据中心快速实现对应数据的管理与分析决策。”同时,腾讯数据中心还通过组建专家团队、高校合作等手段,在碳管理领域进行长远布局规划,希望最终能一站式解决未来行业可能面临的各种难题和挑战。

好事成双,让我们荡起双奖

此外,素有IDC行业“诺贝尔奖”之称的??“数据中心科技成果奖”也在本次峰会隆重发布。共30项技术、2位杰出贡献人才和6位青年科技人才获得荣誉。其中,腾讯数据中心专家架构师曾宪龙秉承创新理念,在数据中心技术、标准和应用等方面取得了优异成绩,获得青年科技人才奖。

腾讯和重庆交通大学联合申报的“微型一体化数据中心自然冷却技术”获得“数据中心科技成果奖”一等奖。该项成果从制冷技术着手,在确保数据中心功能和安全标准的同时,大大降低了微型数据中心的能耗。

展望

腾讯数据中心高级总监杨晓伟与智维平台研发中心总监岳上出席了本次大会。

杨晓伟指出,“数据中心基础设施建设当前迎来高速发展的窗口期,在双碳背景下,腾讯数据中心将结合自身丰富的技术优势和运营管理实践经验,助力数据中心行业朝着绿色智能方向快步前行。”

岳上表示,“腾讯数据中心产品化发展战略和优秀运营体系是腾讯智维得以快速发展的动力源泉。在双碳的大变革下,我们借助本次大会的平台,发布了全新的产品体系,技术体系和生态体系。在未来,我们有决心有能力,和生态伙伴一起,为数据中心行业的发展,为绿色数据中心和智能数据中心的达成贡献力量。”

“东数西算”火热进行中,新基建能耗不容忽视

国家发展改革委等部门近日联合印发文件,部署《全国一体化大数据中心协同创新体系算力枢纽实施方案》,即“东数西算”方案,并着重强调了“加强绿色数据中心建设,强化节能降耗”。

“能该如何耗?”这个是新基建行业必须思考的“必答题”。

用电大户

数据中心和5G基站一样,在支撑数字经济发展过程中发挥着重要作用。赛迪顾问数据显示,2019年中国现有IDC数量大约有7.4万个,约占全球IDC总量的23%,其中,超大型、大型IDC数量占比达到12.7%。规划在建IDC数量320个,超大型、大型IDC数量占比达到36.1%。

调查数据显示,目前亚太市场仍是全球数据中心市场的亮点,2019年数据中心IT投资规模达到751.7亿美元,与2018年同期相比增长达到12.3%。未来市场的主要动力仍来自中国数据中心市场稳步发展。移动互联网、云计算、大数据、人工智能等应用的深化将会是市场动力的主要来源。

算力与经济增长密切相关。《2020全球计算力指数评估报告》显示,计算力指数平均每提高1个点,数字经济和GDP将分别增长3.3‰和1.8‰。对此,浪潮 科技 指出,对于经济增长的追求很容易导致地区数据中心出现“为建而建”的粗放式布局和重复建设问题。这就可能会出现清洁能源充足的地区没有数据中心建设规划,而电力紧张的地方布局了很多数据中心的问题。

此外,某些地区数据中心的机房、电力、网络等配套基础设施都是按照自己的需求进行规划和建设,并未遵守相应的规范。这便造成了看似发展得“遍地开花”,但实际上陷入了零散和“一哄而上”的状态。

另有分析认为,对现存数据中心进行节能改造亦存在不小难度。“改造成本高”、“技术难跟进”等都是摆在数据中心服务商面前的难题。

政策趋严

国家发改委等部门曾多次发文,倡导新基建产业向绿色可持续方向发展。《全国一体化大数据中心协同创新体系算力枢纽实施方案》明确要求在大数据中心建设中,各方需推动数据中心绿色可持续发展,加快节能低碳技术的研发应用,提升能源利用效率,降低数据中心能耗。

《贯彻落实碳达峰碳中和目标要求推动数据中心和5G等新型基础设施绿色高质量发展实施方案》指出,数据中心、5G是支撑未来经济 社会 发展的战略资源和公共基础设施,也是关系新型基础设施节能降耗的最关键的环节。

而在具体指标上相关政策更是划定了日趋严格的标准。2019年2月工信部出台的《关于加强绿色数据中心建设的指导意见》中明确规定,到2022年,数据中心平均能耗基本达到国际先进水平,新建大型、超大型数据中心的电能使用效率值达到(PUE)1.4以下。

PUE(Power Usage Effectiveness,电源使用效率)是国际上比较通行的数据中心电力使用效率的衡量指标。PUE 值是指数据中心消耗的所有能源与IT负载消耗的能源之比。PUE值越接近于1,表示一个数据中心的绿色化程度越高。

2021年7月,北京市发改委出台的《关于进一步加强数据中心项目节能审查的若干规定》更被称为史上最严格的PUE管控政策。规定特别强调了对于超过标准限定值(PUE值1.4)的数据中心将由北京市电力公司按月征收差别电价电费。

而根据2020发布的《中国液冷数据中心发展白皮书》显示,国内数据中心的PUE值普遍在1.4以上。

行业竞“低”

工信部发布的《国家通信业节能技术产品推荐目录(2021)》和《国家通信业节能技术产品应用指南与案例(2021)》就“降碳”问题为数据中心等相关新基建行业提供了节能技术和产品解决方案。内容特别指出,“降低能耗”、“提升能效”,是数据中心节能降碳的关键手段。

在相关指导出台之前,新基建的部分“龙头行业”在相关技术上对于PUE的竞低之争就已打响。

华为官方提供的信息显示,华为数据中心能源集团推出的FusionCol间接蒸发冷却系统技术能够将重点地区的PUE降至1.25以下。浪潮 科技 方面表示,通过采用间接蒸发冷却技术,目前能够实现全年自然冷和超长时间的100%自然冷,整体PUE可保持在1.2以下的水平。中科曙光方面则表示,依靠自主研发的相变式全浸没液冷技术已经将PUE突破性降至1.04。

企业方面对于低PUE的追求一方面受政策和行业标准的影响,而另一方面,从产品竞争力角度来看,低PUE的产品往往更能受到合作方的青睐。

熟悉IDC审批流程的业内人士告诉第一 财经 ,IDC的PUE指标和IDC许可证的审批是挂钩的。政府会依据IDC申请方的PUE及其他能评指标进行审核,并批复与之相对应规模的IDC许可证。换言之,若申请许可证的IDC的相关PUE达不到指标,极有可能申请不到与之需求相匹配的IDC。

数据中心电能使用EEUE分析

世界能源委员会1995年对能源效率的定义为:减少提供同等能源服务的能源投入。 对于能耗居高不下的数据中心,研究提高能源效率具有深远的社会效益和经济效益。 除了能源效率之外,数据中心还有多项其他性能指标,按照国际标准组织ISO的定义统称为关键性能指标,或称为关键绩效指标,研究这些指标对于数据中心同样具有十分重要的意义。 在已经颁布的数据中心性能指标中最常见的是电能使用效率PUE。 在我国,PUE不但是数据中心研究、设计、设备制造、建设和运维人员最为熟悉的数据中心能源效率指标,也是政府评价数据中心工程性能的主要指标。 除了PUE之外,2007年以后还出台了多项性能指标,虽然知名度远不及PUE,但是在评定数据中心的性能方面也有一定的参考价值,值得关注和研究。 PUE在国际上一直是众说纷纭、莫衷一是的一项指标,2015年ASHRAE公开宣布,ASHRAE标准今后不再采用PUE这一指标,并于2016年下半年颁布了ASHRAE 90.4标准,提出了新的能源效率;绿色网格组织(TGG)也相继推出了新的能源性能指标。 对PUE和数据中心性能指标的讨论一直是国际数据中心界的热门议题。 鉴于性能指标对于数据中心的重要性、国内与国际在这方面存在的差距,以及在采用PUE指标过程中存在的问题,有必要对数据中心的各项性能指标,尤其是对PUE进行深入地研究和讨论。 1.性能指标 ISO给出的关键性能指标的定义为:表示资源使用效率值或是给定系统的效率。 数据中心的性能指标从2007年开始受到了世界各国的高度重视,相继推出了数十个性能指标。 2015年之后,数据中心性能指标出现了较大变化,一系列新的性能指标相继被推出,再度引发了国际数据中心界对数据中心的性能指标,尤其是对能源效率的关注,并展开了广泛的讨论。 2.PUE 2.1PUE和衍生效率的定义和计算方法 2.1.1电能使用效率PUE TGG和ASHRAE给出的PUE的定义相同:数据中心总能耗Et与IT设备能耗之比。 GB/T.3—2016给出的EEUE的定义为:数据中心总电能消耗与信息设备电能消耗之间的比值。 其定义与PUE相同,不同的是把国际上通用的PUE(powerusage effectiveness)改成了EEUE(electricenergy usage effectiveness)。 国内IT界和暖通空调界不少专业人士对于这一变更提出了不同的看法,根据Malone等人最初对PUE的定义,Et应为市电公用电表所测量的设备总功率,这里的Et就是通常所说的数据中心总的设备耗电量,与GB/T.3—2016所规定的Et应为采用电能计量仪表测量的数据中心总电能消耗的说法相同。 笔者曾向ASHRAE有关权威人士咨询过,他们认为如果要将“power”用“electricenergy”来替代,则采用“electricenergy consumption”(耗电量)更准确。 显然这一变更不利于国际交流。 虽然这只是一个英文缩写词的变更,但因为涉及到专业术语,值得商榷。 ISO给出的PUE的定义略有不同:计算、测量和评估在同一时期数据中心总能耗与IT设备能耗之比。 2.1.2部分电能使用效率pPUE TGG和ASHRAE给出的pPUE的定义相同:某区间内数据中心总能耗与该区间内IT设备能耗之比。 区间(zone)或范围( boundary)可以是实体,如集装箱、房间、模块或建筑物,也可以是逻辑上的边界,如设备,或对数据中心有意义的边界。 ISO给出的pPUE的定义有所不同:某子系统内数据中心总能耗与IT设备总能耗之比。 这里的“子系统”是指数据中心中某一部分耗能的基础设施组件,而且其能源效率是需要统计的,目前数据中心中典型的子系统是配电系统、网络设备和供冷系统。 2.1.3设计电能使用效率dPUE ASHRAE之所以在其标准中去除了PUE指标,其中一个主要原因是ASHRAE认为PUE不适合在数据中心设计阶段使用。 为此ISO给出了设计电能使用效率dPUE,其定义为:由数据中心设计目标确定的预期PUE。 数据中心的能源效率可以根据以下条件在设计阶段加以预测:1)用户增长情况和期望值;2)能耗增加或减少的时间表。 dPUE表示由设计人员定义的以最佳运行模式为基础的能耗目标,应考虑到由于数据中心所处地理位置不同而导致的气象参数(室外干球温度和湿度)的变化。 2.1.4期间电能使用效率iPUE ISO给出的期间电能使用效率iPUE的定义为:在指定时间测得的PUE,非全年值。 2.1.5电能使用效率实测值EEUE-R GB/T.3—2016给出的EEUE-R的定义为:根据数据中心各组成部分电能消耗测量值直接得出的数据中心电能使用效率。 使用EEUE-R时应采用EEUE-Ra方式标明,其中a用以表明EEUE-R的覆盖时间周期,可以是年、月、周。 2.1.6电能使用效率修正值EEUE-X GB/T.3—2016给出的EEUE-X的定义为:考虑采用的制冷技术、负荷使用率、数据中心等级、所处地域气候环境不同产生的差异,而用于调整电能使用率实测值以补偿其系统差异的数值。 2.1.7采用不同能源的PUE计算方法 数据中心通常采用的能源为电力,当采用其他能源时,计算PUE时需要采用能源转换系数加以修正。 不同能源的转换系数修正是评估数据中心的一次能源使用量或燃料消耗量的一种方法,其目的是确保数据中心购买的不同形式的能源(如电、天然气、冷水)可以进行公平地比较。 例如,如果一个数据中心购买当地公用事业公司提供的冷水,而另一个数据中心采用由电力生产的冷水,这就需要有一个系数能使得所使用的能源在相同的单位下进行比较,这个系数被称为能源转换系数,它是一个用来反映数据中心总的燃料消耗的系数。 当数据中心除采用市电外,还使用一部分其他能源时,就需要对这种能源进行修正。 2.1.8PUE和EEUE计算方法的比较 如果仅从定义来看,PUE和EEUE的计算方法十分简单,且完全相同。 但是当考虑到计算条件的不同,需要对电能使用效率进行修正时,2种效率的计算方法则有所不同。 1)PUE已考虑到使用不同能源时的影响,并给出了修正值和计算方法;GB/T.3—2016未包括可再生能源利用率,按照计划这一部分将在GB/T.4《可再生能源利用率》中说明。 2)PUE还有若干衍生能源效率指标可供参考,其中ISO提出的dPUE弥补了传统PUE的不足;EEUE则有类似于iPUE的指标EEUE-Ra。 3)EEUE分级(见表1)与PUE分级(见表2)不同。 4)EEUE同时考虑了安全等级、所处气候环境、空调制冷形式和IT设备负荷使用率的影响。 ASHRAE最初给出了19个气候区的PUE最大限值,由于PUE已从ASHRAE标准中去除,所以目前的PUE未考虑气候的影响;ISO在计算dPUE时,要求考虑气候的影响,但是如何考虑未加说明;PUE也未考虑空调制冷形式和负荷使用率的影响,其中IT设备负荷率的影响较大,应加以考虑。 2.2.PUE和EEUE的测量位置和测量方法 2.2.1PUE的测量位置和测量方法 根据IT设备测点位置的不同,PUE被分成3个类别,即PUE1初级(提供能源性能数据的基本评价)、PUE2中级(提供能源性能数据的中级评价)、PUE3高级(提供能源性能数据的高级评价)。 PUE1初级:在UPS设备输出端测量IT负载,可以通过UPS前面板、UPS输出的电能表以及公共UPS输出总线的单一电表(对于多个UPS模块而言)读取。 在数据中心供电、散热、调节温度的电气和制冷设备的供电电网入口处测量进入数据中心的总能量。 基本监控要求每月至少采集一次电能数据,测量过程中通常需要一些人工参与。 PUE2中级:通常在数据中心配电单元前面板或配电单元变压器二次侧的电能表读取,也可以进行单独的支路测量。 从数据中心的电网入口处测量总能量,按照中等标准的检测要求进行能耗测量,要求每天至少采集一次电能数据。 与初级相比,人工参与较少,以电子形式采集数据为主,可以实时记录数据,预判未来的趋势走向。 PUE3高级:通过监控带电能表的机架配电单元(即机架式电源插座)或IT设备,测量数据中心每台IT设备的负载(应该扣除非IT负载)。 在数据中心供电的电网入口处测量总能量,按照高标准的检测要求进行能耗测量,要求至少每隔15min采集一次电能数据。 在采集和记录数据时不应该有人工参与,通过自动化系统实时采集数据,并支持数据的广泛存储和趋势分析。 所面临的挑战是以简单的方式采集数据,满足各种要求,最终获取数据中心的各种能量数据。 对于初级和中级测量流程,建议在一天的相同时间段测量,数据中心的负载尽量与上次测量时保持一致,进行每周对比时,测量时间应保持不变(例如每周周三)。 2.2.2EEUE的测量位置和测量方法 1)Et测量位置在变压器低压侧,即A点; 2)当PDU无隔离变压器时,EIT测量位置在UPS输出端,即B点; 3)当PDU带隔离变压器时,EIT测量位置在PDU输出端,即C点; 4)大型数据中心宜对各主要系统的耗电量分别计量,即E1,E2,E3点; 5)柴油发电机馈电回路的电能应计入Et,即A1点; 6)当采用机柜风扇辅助降温时,EIT测量位置应为IT负载供电回路,即D点; 7)当EIT测量位置为UPS输出端供电回路,且UPS负载还包括UPS供电制冷、泵时,制冷、泵的能耗应从EIT中扣除,即扣除B1和B2点测得的电量。 2.2.3PUE和EEUE的测量位置和测量方法的差异 1)PUE的Et测量位置在电网输入端、变电站之前。 而GB/T.3—2016规定EEUE的Et测量位置在变压器低压侧。 数据中心的建设有2种模式:①数据中心建筑单独设置,变电站自用,大型和超大型数据中心一般采用这种模式;②数据中心置于建筑物的某一部分,变电站共用,一般为小型或中型数据中心。 由于供电局的收费都包括了变压器的损失,所以为了准确计算EEUE,对于前一种模式,Et测量位置应该在变压器的高压侧。 2)按照2.2.2节第6条,在计算EIT时,应减去机柜风机的能耗。 应该指出的是,机柜风机不是辅助降温设备,起到降温作用的是来自空调设备的冷空气,降温的设备为空调换热器,机柜风机只是起到辅助传输冷风的作用,因此机柜风机不应作为辅助降温设备而计算其能耗。 在GB/T.3征求意见时就有人提出:机柜风机的能耗很难测量,所以在实际工程中,计算PUE时,EIT均不会减去机柜风机的能耗。 在美国,计算PUE时,机柜风机的能耗包括在EIT中。 3)PUE的测点明显多于GB/T.3—2016规定的EEUE的测点。 2.3.PUE存在的问题 1)最近两年国内外对以往所宣传的PUE水平进行了澄清。 我国PUE的真实水平也缺乏权威调查结果。 GB/T.3—2016根据国内实际状况,将一级节能型数据中心的EEUE放宽到1.0~1.6,其上限已经超过了国家有关部委提出的绿色数据中心PUE应低于1.5的要求,而二级比较节能型数据中心的EEUE规定为1.6~1.8,应该说这样的规定比较符合国情。 2)数据中心总能耗Et的测量位置直接影响到PUE的大小,因此应根据数据中心建筑物市电变压器所承担的荷载组成来决定其测量位置。 3)应考虑不同负荷率的影响。 当负荷率低于30%时,不间断电源UPS的效率会急剧下降,PUE值相应上升。 对于租赁式数据中心,由于用户的进入很难一步到位,所以数据中心开始运行后,在最初的一段时间内负荷率会较低,如果采用设计PUE,也就是满负荷时的PUE来评价或验收数据中心是不合理的。 4)数据中心的PUE低并非说明其碳排放也低。 完全采用市电的数据中心与部分采用可再生能源(太阳能发电、风电等),以及以燃气冷热电三联供系统作为能源的数据中心相比,显然碳排放指标更高。 数据中心的碳排放问题已经引起国际上广泛地关注,碳使用效率CUE已经成为数据中心重要的关键性能指标,国内对此的关注度还有待加强。 5)GB/T.3—2016规定,在计算EIT时,应减去机柜风机的耗能。 关于机柜风机的能耗是否应属于IT设备的能耗,目前国内外有不同的看法,其中主流观点是服务器风机的能耗应属于IT设备的能耗,其原因有二:一是服务器风机是用户提供的IT设备中的一个组成部分,自然属于IT设备;二是由于目前服务器所采用的风机基本上均为无刷直流电动机驱动的风机(即所谓EC电机),风机的风量和功率随负荷变化而改变,因此很难测量风机的能耗。 由于数据中心风机的设置对PUE的大小影响很大,需要认真分析。 从实际使用和节能的角度出发,有人提出将服务器中的风机取消,而由空调风机取代。 由于大风机的效率明显高于小风机,且初投资也可以减少,因此这种替代方法被认为是一个好主意,不过这是一个值得深入研究的课题。 6)国内相关标准有待进一步完善。 GB/T.3—2016《数据中心资源利用第3部分:电能能效要求和测量方法》的发布,极大地弥补了国内标准在数据中心电能能效方面的不足;同时,GB/T.3—2016标准颁布后,也引起了国内学术界和工程界的热议。 作为一个推荐性的国家标准如何与已经颁布执行的强制性行业标准YD 5193—2014《互联网数据中心(IDC)工程设计规范》相互协调?在标准更新或升级时,包括内容相似的国际标准ISOIEC -2-2016在内的国外相关标准中有哪些内容值得借鉴和参考?标准在升级为强制性国家标准之前相关机构能否组织就其内容进行广泛的学术讨论?都是值得考虑的重要课题。 ASHRAE在发布ASHRAE90.4标准时就说明,数据中心的标准建立在可持续发展的基础上,随着科学技术的高速发展,标准也需要不断更新和创新。 7)PUE的讨论已经相当多,事实上作为大数据中心的投资方和运营方,更关心的还是数据中心的运行费用,尤其是电费和水费。 目前在数据中心关键性能指标中尚缺乏一个经济性指标,使得数据中心,尤其是大型数据中心和超大型数据中心的经济性无法体现。 2.4.PUE的比较 不同数据中心的PUE值不应直接进行比较,但是条件相似的数据中心可以从其他数据中心所提供的测量方法、测试结果,以及数据特性的差异中获益。 为了使PUE比较结果更加公平,应全面考虑数据中心设备的使用时间、地理位置、恢复能力、服务器可用性、基础设施规模等。 3.其他性能指标 3.1.ASHRAE90.4 ASHRAE90.4-2016提出了2个新的能源效率指标,即暖通空调负载系数MLC和供电损失系数ELC。 但这2个指标能否为国际IT界接受,还需待以时日。 3.1.1暖通空调负载系数MLC ASHRAE对MLC的定义为:暖通空调设备(包括制冷、空调、风机、水泵和冷却相关的所有设备)年总耗电量与IT设备年耗电量之比。 3.1.2供电损失系数ELC ASHRAE对ELC的定义为:所有的供电设备(包括UPS、变压器、电源分配单元、布线系统等)的总损失。 3.2.TGG白皮书68号 2016年,TGG在白皮书68号中提出了3个新的能源效率指标,即PUE比(PUEr)、IT设备热一致性(ITTC)和IT设备热容错性(ITTR),统称为绩效指标(PI)。 这些指标与PUE相比,不但定义不容易理解,计算也十分困难,能否被IT界接受,还有待时间的考验。 3.2.1PUE比 TGG对PUEr的定义为:预期的PUE(按TGG的PUE等级选择)与实测PUE之比。 3.2.2IT设备热一致性ITTC TGG对ITTC的定义为:IT设备在ASHRAE推荐的环境参数内运行的比例。 服务器的进风温度一般是按ASHRAE规定的18~27℃设计的,但是企业也可以按照自己设定的服务器进风温度进行设计,在此进风温度下,服务器可以安全运行。 IT设备热一致性表示符合ASHRAE规定的服务器进风温度的IT负荷有多少,以及与总的IT负荷相比所占百分比是多少。 例如一个IT设备总负荷为500kW的数据中心,其中满足ASHRAE规定的服务器进风温度的IT负荷为450kW,则该数据中心的IT设备热一致性为95%。 虽然TGG解释说,IT设备热一致性涉及的只是在正常运行条件下可接受的IT温度,但是IT设备热一致性仍然是一个很难计算的能源效率,因为必须知道:1)服务器进风温度的范围,包括ASHRAE规定的和企业自己规定的进风温度范围;2)测点位置,需要收集整个数据中心服务器各点的进风温度,由人工收集或利用数据中心基础设施管理(DCIM)软件来统计。 3.2.3IT设备热容错性ITTR TGG对ITTR的定义为:当冗余制冷设备停机,或出现故障,或正常维修时,究竟有多少IT设备在ASHRAE允许的或建议的送风温度32℃下送风。 按照TGG的解释,ITTR涉及的只是在出现冷却故障和正常维修运行条件下可接受的IT温度,但是ITTR也是一个很难确定的参数。 ITTR的目的是当冗余冷却设备停机,出现冷却故障或在计划维护活动期间,确定IT设备在允许的入口温度参数下(<32℃)运行的百分比,以便确定数据中心冷却过程中的中断或计划外维护的性能。 这个参数很难手算,因为它涉及到系统操作,被认为是“计划外的”条件,如冷却单元的损失。 3.3.数据中心平均效率CADE 数据中心平均效率CADE是由麦肯锡公司提出,尔后又被正常运行时间协会(UI)采用的一种能源效率。 CADE提出时自认为是一种优于其他数据中心能源效率的指标。 该指标由于被UI所采用,所以直到目前仍然被数量众多的权威著作、文献认为是可以采用的数据中心性能指标之一。 但是笔者发现这一性能指标的定义并不严谨,容易被误解。 另外也难以测量和计算。 该指标的提出者并未说明IT资产效率如何测量,只是建议ITAE的默认值取5%,所以这一指标迄今为止未能得到推广应用。 3.4.IT电能使用效率ITUE和总电能使用效率TUE 2013年,美国多个国家级实验室鉴于PUE的不完善,提出了2个新的能源效率——总电能使用效率TUE和IT电能使用效率ITUE。 提出ITUE和TUE的目的是解决由于计算机技术的发展而使得数据中心计算机配件(指中央处理器、内存、存储器、网络系统,不包括IT设备中的电源、变压器和机柜风机)的能耗减少时,PUE反而增加的矛盾。 但是这2个性能指标也未得到广泛应用。 3.5.单位能源数据中心效率DPPE 单位能源数据中心效率DPPE是日本绿色IT促进协会(GIPC)和美国能源部、环保协会、绿色网格,欧盟、欧共体、英国计算机协会共同提出的一种数据中心性能指标。 GIPC试图将此性能指标提升为国际标准指标。 3.6.水利用效率WUE TGG提出的水利用效率WUE的定义为:数据中心总的用水量与IT设备年耗电量之比。 数据中心的用水包括:冷却塔补水、加湿耗水、机房日常用水。 根据ASHRAE的调查结果,数据中心基本上无需加湿,所以数据中心的用水主要为冷却塔补水。 采用江河水或海水作为自然冷却冷源时,由于只是取冷,未消耗水,可以不予考虑。 民用建筑集中空调系统由于总的冷却水量不大,所以判断集中空调系统的性能时,并无用水量效率之类的指标。 而数据中心由于全年制冷,全年的耗水量居高不下,已经引起了国内外,尤其是水资源贫乏的国家和地区的高度重视。 如何降低数据中心的耗水量,WUE指标是值得深入研究的一个课题。 3.7.碳使用效率CUE TGG提出的碳使用效率CUE的定义为:数据中心总的碳排放量与IT设备年耗电量之比。 CUE虽然形式简单,但是计算数据中心总的碳排放量却很容易出错。 碳排放量应严格按照联合国气象组织颁布的计算方法进行计算统计。

工信部等三部门联合发文:大型和超大型数据中心PUE值不高于1.4

工信部、国家机关事务管理局、国家能源局近日联合印发《关于加强绿色数据中心建设的指导意见》(下简称《意见》),明确提出要建立健全绿色数据中心标准评价体系和能源资源监管体系,到2022年,数据中心平均能耗基本达到国际先进水平。 《意见》指出,引导大型和超大型数据中心设计电能使用效率值不高于1.4;力争通过改造使既有大型、超大型数据中心电能使用效率值不高于1.8。 基本原则 政策引领、市场主导。 充分发挥市场配置资源的决定性作用,调动各类市场主体的积极性、创造性。 更好发挥政府在规划、政策引导和市场监管中的作用,着力构建有效激励约束机制,激发绿色数据中心建设活力。 改造存量、优化增量。 建立绿色运维管理体系,加快现有数据中心节能挖潜与技术改造,提高资源能源利用效率。 强化绿色设计、采购和施工,全面实现绿色增量。 创新驱动、服务先行。 大力培育市场创新主体,加快建立绿色数据中心服务平台,完善标准和技术服务体系,推动关键技术、服务模式的创新,引导绿色水平提升。 主要目标 建立健全绿色数据中心标准评价体系和能源资源监管体系,打造一批绿色数据中心先进典型,形成一批具有创新性的绿色技术产品、解决方案,培育一批专业第三方绿色服务机构。 到2022年,数据中心平均能耗基本达到国际先进水平,新建大型、超大型数据中心的电能使用效率值达到1.4以下,高能耗老旧设备基本淘汰,水资源利用效率和清洁能源应用比例大幅提升,废旧电器电子产品得到有效回收利用。 重点任务 (一)提升新建数据中心绿色发展水平 1.强化绿色设计 加强对新建数据中心在IT设备、机架布局、制冷和散热系统、供配电系统以及清洁能源利用系统等方面的绿色化设计指导。 鼓励采用液冷、分布式供电、模块化机房以及虚拟化、云化IT资源等高效系统设计方案,充分考虑动力环境系统与IT设备运行状态的精准适配;鼓励在自有场所建设自然冷源、自有系统余热回收利用或可再生能源发电等清洁能源利用系统;鼓励应用数值模拟技术进行热场仿真分析,验证设计冷量及机房流场特性。 引导大型和超大型数据中心设计电能使用效率值不高于1.4。 2.深化绿色施工和采购 引导数据中心在新建及改造工程建设中实施绿色施工,在保证质量、安全基本要求的同时,最大限度地节约能源资源,减少对环境负面影响,实现节能、节地、节水、节材和环境保护。 严格执行《电器电子产品有害物质限制使用管理办法》和《电子电气产品中限用物质的限量要求》(GB/T)等规范要求,鼓励数据中心使用绿色电力和满足绿色设计产品评价等要求的绿色产品,并逐步建立健全绿色供应链管理制度。 (二)加强在用数据中心绿色运维和改造 1.完善绿色运行维护制度 指导数据中心建立绿色运维管理体系,明确节能、节水、资源综合利用等方面发展目标,制定相应工作计划和考核办法;结合气候环境和自身负载变化、运营成本等因素科学制定运维策略;建立能源资源信息化管控系统,强化对电能使用效率值等绿色指标的设置和管理,并对能源资源消耗进行实时分析和智能化调控,力争实现机械制冷与自然冷源高效协同;在保障安全、可靠、稳定的基础上,确保实际能源资源利用水平不低于设计水平。 2.有序推动节能与绿色化改造 有序推动数据中心开展节能与绿色化改造工程,特别是能源资源利用效率较低的在用老旧数据中心。 加强在设备布局、制冷架构、外围护结构(密封、遮阳、保温等)、供配电方式、单机柜功率密度以及各系统的智能运行策略等方面的技术改造和优化升级。 鼓励对改造工程进行绿色测评。 力争通过改造使既有大型、超大型数据中心电能使用效率值不高于1.8。 3.加强废旧电器电子产品处理 加快高耗能设备淘汰,指导数据中心科学制定老旧设备更新方案,建立规范化、可追溯的产品应用档案,并与产品生产企业、有相应资质的回收企业共同建立废旧电器电子产品回收体系。 在满足可靠性要求的前提下,试点梯次利用动力电池作为数据中心削峰填谷的储能电池。 推动产品生产、回收企业加快废旧电器电子产品资源化利用,推行产品源头控制、绿色生产,在产品全生命周期中最大限度提升资源利用效率。 (三)加快绿色技术产品创新推广 1.加快绿色关键和共性技术产品研发创新 鼓励数据中心骨干企业、科研院所、行业组织等加强技术协同创新与合作,构建产学研用、上下游协同的绿色数据中心技术创新体系,推动形成绿色产业集群发展。 重点加快能效水效提升、有毒有害物质使用控制、废弃设备及电池回收利用、信息化管控系统、仿真模拟热管理和可再生能源、分布式供能、微电网利用等领域新技术、新产品的研发与创新,研究制定相关技术产品标准规范。 2.加快先进适用绿色技术产品推广应用 加快绿色数据中心先进适用技术产品推广应用,重点包括:一是高效IT设备,包括液冷服务器、高密度集成IT设备、高转换率电源模块、模块化机房等;二是高效制冷系统,包括热管背板、间接式蒸发冷却、行级空调、自动喷淋等;三是高效供配电系统,包括分布式供能、市电直供、高压直流供电、不间断供电系统ECO模式、模块化UPS等;四是高效辅助系统,包括分布式光伏、高效照明、储能电池管理、能效环境集成监控等。 (四)提升绿色支撑服务能力 1.完善标准体系 充分发挥标准对绿色数据中心建设的支撑作用,促进绿色数据中心提标升级。 建立健全覆盖设计、建设、运维、测评和技术产品等方面的绿色数据中心标准体系,加强标准宣贯,强化标准配套衔接。 加强国际标准话语权,积极推动与国际标准的互信互认。 以相关测评标准为基础,建立自我评价、社会评价和政府引导相结合的绿色数据中心评价机制,探索形成公开透明的评价结果发布渠道。 2.培育第三方服务机构 加快培育具有公益性质的第三方服务机构,鼓励其创新绿色评价及服务模式,向数据中心提供咨询、检测、评价、审计等服务。 鼓励数据中心自主利用第三方服务机构开展绿色评测,并依据评测结果开展有实效的绿色技术改造和运维优化。 依托高等院校、科研院所、第三方服务等机构建立多元化绿色数据中心人才培训体系,强化对绿色数据中心人才的培养。 (五)探索与创新市场推动机制 鼓励数据中心和节能服务公司拓展合同能源管理,研究节能量交易机制,探索绿色数据中心融资租赁等金融服务模式。 鼓励数据中心直接与可再生能源发电企业开展电力交易,购买可再生能源绿色电力证书。 探索建立绿色数据中心技术创新和推广应用的激励机制和融资平台,完善多元化投融资体系。 保障措施 (一)加强组织领导。 工业和信息化部、国家机关事务管理局、国家能源局建立协调机制,强化在政策、标准、行业管理等方面的沟通协作,加强对地方相关工作的指导。 各地工业和信息化、机关事务、能源主管部门要充分认识绿色数据中心建设的重要意义,结合实际制定相关政策措施,充分发挥行业协会、产业联盟等机构的桥梁纽带作用,切实推动绿色数据中心建设。 (二)加强行业监管。 在数据中心重点应用领域和地区,了解既有数据中心绿色发展水平,研究数据中心绿色发展现状。 将重点用能数据中心纳入工业和通信业节能监察范围,督促开展节能与绿色化改造工程。 推动建立数据中心节能降耗承诺、信息依法公示、社会监督和违规惩戒制度。 遴选绿色数据中心优秀典型,定期发布《国家绿色数据中心名单》。 充分发挥公共机构特别是党政机关在绿色数据中心建设的示范引领作用,率先在公共机构组织开展数据中心绿色测评、节能与绿色化改造等工作。 (三)加强政策支持。 充分利用绿色制造、节能减排等现有资金渠道,发挥节能节水、环境保护专用设备所得税优惠政策和绿色信贷、首台(套)重大技术装备保险补偿机制支持各领域绿色数据中心创建工作。 优先给予绿色数据中心直供电、大工业用电、多路市电引入等用电优惠和政策支持。 加大政府采购政策支持力度,引导国家机关、企事业单位优先采购绿色数据中心所提供的机房租赁、云服务、大数据等方面服务。 (四)加强公共服务。 整合行业现有资源,建立集政策宣传、技术交流推广、人才培训、数据分析诊断等服务于一体的国家绿色数据中心公共服务平台。 加强专家库建设和管理,发挥专家在决策建议、理论指导、专业咨询等方面的积极作用。 持续发布《绿色数据中心先进适用技术产品目录》,加快创新成果转化应用和产业化发展。 鼓励相关企事业单位、行业组织积极开展技术产品交流推广活动,鼓励有条件的企业、高校、科研院所针对绿色数据中心关键和共性技术产品建立实验室或者工程中心。 (五)加强国际交流合作。 充分利用现有国际合作交流机制和平台,加强在绿色数据中心技术产品、标准制定、人才培养等方面的交流与合作,举办专业培训、技术和政策研讨会、论坛等活动,打造一批具有国际竞争力的绿色数据中心,形成相关技术产品整体解决方案。 结合“一带一路”倡议等国家重大战略,加快开拓国际市场,推动优势技术和服务走出去。 结语 据悉,在数据中心当前的后期运营,能耗是最大成本,占比超过50%。 降低能耗效率(PUE)值,一直是业界相关部门关心的重点。 工信部在2017年4月发布的《关于加强“十 三五”信息通信业节能减排工作的指导意见》中指出:“十二五”期间新建大型数据中心的能耗效率(PUE)要普遍低于1.5;到2020年,新建大型、超大型数据中心的能耗效率(PUE)值必须达到1.4 以下。 去年3月,工信部首次公布的《全国数据中心应用发展指引》中称:全国超大型数据中心平均PUE(平均电能使用效率)为1.50,大型数据中心平均PUE为1.69。 而根据“十三五规划”,到2020年,新建大型云计算数据中心PUE值将不得高于1.4。 如今,三部门联手针对绿色数据中心建设进一步提出了明确的指导意见。 在这样的大背景下,数据中心运营商如何运用新技术、新架构降低能源降耗,实现数据中心的绿色发展,将成为行业的关注热点,与此同时,节能降耗的大趋势之下,也将带来更多的市场机遇。

数据中心纳入新基建,未来发展会怎样?

加快制定碳达峰行动方案,推进产业结构升级和低碳化发展

碳中和指通过植树造林、节能减排等方法增加碳吸收量,将碳吸收量与碳排放量抵消,实现碳中和。碳达峰就是二氧化碳的排放不再增长,达到峰值之后再慢慢减下去,是碳中和前必须经过的阶段。

2020年9月,在第75届联合国大会上,我国提出二氧化碳排放力争在2030年前达峰,努力争取2060年实现碳中和。2020年12月,中央经济工作会议将“做好碳达峰、碳中和工作”列为2021年的重点任务之一。

2021年3月,政府工作报告中指出将制定2030年前碳排放达峰行动方案,推进优化产业结构和能源结构,大力发展新能源。

数据中心规模扩大,能耗随之增加

数据中心是数字经济的核心基础设施,我国政府已将数据中心列为七大“新基建”领域之一,同时工信部也将其纳入国家新型工业化产业示范范畴。受益于云计算、5G、物联网、VR/AR等新应用的广泛兴起,我国IDC业务收入连续高速增长,2020年全年规模实现2238.7亿元,同比增长43.3%。

数据中心是公认的高耗能行业,过去十年间,我国数据中心整体用电量以每年超过10%的速度递增,2018年,全国数据中心总耗电量1500亿千瓦时,达到了社会总用电量的2.19%。预计到2025年,占比将增加一倍,达到4.05%。

当前中国的电力结构仍以燃煤发电为主,在数据中心供电结构中,火电占比超过70%,会产生大量的温室气体及其他污染物。

碳中和政策影响下,推进建设节能型绿色数据中心建设政策陆续出台

碳中和目标背景下,国家发布《关于加快构建全国一体化大数据中心协同创新体系的指导意见》等政策,提出强化数据中心能源配套机制,推进建设绿色数据中心,实现数据中心行业碳减排。

北上广深为首的核心一线城市纷纷推出节能减排政策,对IDC的PUE能耗水平进行严格控制,在能耗总量限制基础上大力推进绿色数据中心建设,同时对核心土地指标进行管制。

政策限制高PUE值数据中心入场,数据中心降PUE大势所趋

PUE(Power Usage Effectiveness)是衡量数据中心运行效率的指标,其越接近于1,代表数据中心对于电能的利用越有效率。根据《全国数据中心应用发展指引》数据,2017-2019年,我国在用超大型、规划在建大型和超大型数据中心PUE值均呈下降趋势,说明降低数据中心的PUE值并实现能耗降低成为发展趋势。

从区域分布来看,河北、西藏、江苏、山西、湖南等地数据中心PUE值处于较高水平。国家和地方持续出台一系列政策引导数据中心绿色发展,对数据中心PUE提出了明确指标,数据中心一直在加快绿色化发展,不少优秀数据中心获得了数据中心绿色等级4A、5A级,部分达到国际领先水平。

随着国家绿色数据中心政策及地方政策的逐步推进,未来,数据中心在降低PUE的同时,可通过自建或采购可再生能源电力、购买绿电证书、碳排放交易等手段加快实现碳中和目标。

根据《2019中国企业绿色计算与可持续发展研究报告》指出,中国企业数据中心PUE值有明显改善。PUE值大于2.0的企业从2012年的34.6%降至2019年的2%,小于1.5的企业从3.7%上升到12.9%。但依然有85%的受访企业数据中心的PUE值在1.5-2.0间,存在较大提升空间。

绿色数据中心建设加快,互联网和通信领域较多

数据中心是未来为数不多能源消耗占社会总用电量比例持续增长的行业。因此,数据中心行业需要积极践行碳中和,对于我国在2060年前实现碳中和的目标意义重大。因此,各地数据中心绿色化建设加快。2021年1月,工业和信息化部、国家发展改革委、商务部、国管局、银保监会、国家能源局确定了60家2020年度国家绿色数据中心名单,如下:

分领域来看,互联网领域和通信领域绿色数据中心数量较多,分别有25个和21个,占比分别为41%和35%;此外金融领域有10个,占比17%,公共机构和能源领域分别占5%和2%。

碳中和背景下,能源使用由传统能源向可再生能源转变

《欧洲气候中立数据中心公约》指出到2025年12月31日,数据中心使用电力可再生能源将达到75%,到2030年12月31日达到100%的使用可再生能源,并达到无碳绿色数据中心水平。使用绿色清洁能源成为数据中心节能减排的重要途径。

国内来看,如果未来五年数据中心采用市电的比例维持2018年水平,而企业不采取额外措施提高可再生能源使用,到2023年数据中心用电五年内将新增6487万吨的二氧化碳排放量。如果通过提高可再生能源上网消纳以及数据中心企业更主动采购可再生能源等措施,将避免二氧化碳排放1583万吨。

——更多数据来请参考前瞻产业研究院《中国数据中心行业市场需求与投资战略规划分析报告》。

限‌电对于数‌据中心产业影响挺大的,有什么好的节能办法吗? 路坦力超融合对这方面有用吗?

数据中心作为经济社会运行不可或缺的关键基础设施,是公认的高耗电行业。

据前瞻产业研究院分析,过去十年间,我国数据中心整体用电量以每年超过 10% 的速度递增,其耗电量在 2020 年突破 2000 亿千瓦时,约占全社会用电量的 2.71%,2014-2020 年,数据中心耗电量占比逐年升高。数据中心供电结构中,火电占比超过 70%,会产生相对大量的温室气体和其他污染物。

PUE (Power Usage Effectiveness,电能利用效率) 是衡量数据中心能源使用效率的重要指标。PUE 越接近于 1,代表数据中心对于电能的利用越有效率。截至 2019 年年底,全国超大型数据中心平均 PUE 为 1.46,大型数据中心平均 PUE 为 1.55。这与《关于加快构建全国一体化大数据中心协同创新体系的指导意见》建议的1.3 以下相比,尚有一段距离。

可见,限‌电对于数‌据中心产业影响挺大的。顺应碳中和发展趋势,逐步降低碳排放,是数据中心亟需做出的改变。

数据中心降碳,可双管齐下

数据中心如何才能提升能源效率,为降碳做出贡献?主流的数据中心降碳举措可分为 IT 和 非 IT 基础设施两个方面。

非 IT 基础设施方面,常见的有数据中心选址靠近绿色清洁能源、尽量使用可再生能源、采用液冷技术取代风扇散热、数据中心余热回收再利用等等。这其中最为有效的不外乎在数据中心乃至公司运营范围内 100% 使用可再生能源,但这绝非易事——苹果用了 5 年时间才实现公司运营范围内 100% 可再生能源利用。

而在 IT 基础设施方面,企业可立即采用诸多举措来提升能源效率:通过分布式和虚拟化技术将“僵尸”服务器连接起来,最大程度减少 IT 设备空闲;实现服务器和存储的虚拟化与池化,从而大幅提升硬件利用率;通过采用更高能效的芯片产品,结合芯片的自适应电源管理功能来有效管理芯片用电,等等。

其中,虚拟化和超融合基础设施 (HCI)有望引领数据中心能效的提升。

虚拟化已十分普遍,超融合基础设施也在近年来逐渐成为主流。作为一种融合的、统一的 IT 基础架构,超融合包含了数据中心常见的元素:计算、存储、网络以及管理工具。超融合以软件为中心,结合 x86 或 ARM 架构的硬件替代传统架构中的专用硬件,从而解决传统架构中管理复杂、难以扩展等问题。

相比传统架构,超融合将架构由三层缩减至两层,不仅可以大幅度节省机房空间,还能进一步整合计算资源,从而提升机房能效。超融合架构自带计算虚拟化和分布式存储,取代了传统物理环境和传统虚拟环境,对数据中心降碳的影响显著。

经过通用场景下的对比计算,从传统物理环境到传统虚拟环境,仅是虚拟化这一层即可带来 20%-80% 的节能;而从传统虚拟环境进一步过渡到超融合架构,通过将分布式存储融合到计算侧,可再带来高达 31% 的能耗节省。以下为计算详情(以下为理论值,不同负载情况下物理服务器能耗会有有所不同,不同服务器也会表现不同,同时不考虑交换机等因素)。

计算虚拟化:节能 20%-80%,虚拟化程度越高越节能

计算虚拟化是从 IT 基础设施层面提升能效的关键。它实现了 IT 基础设施从物理架构到虚拟化的跃升,减少物理服务器的数量、增加 IT 资源的利用率,让数据中心得以使用更少的基础设施即可运行更大的工作负载。IDC 报告指出,数据中心中计算、存储、网络层虚拟化程度越高,所带来的碳影响就越小。

以 4 台物理服务器搭配 1 台存储系统的配置为例,通过用虚拟化取代原有的物理机,能实现约为 20% 到 80% 的能耗节省(取决于虚拟机部署的密度)。

传统物理环境 vs. 传统虚拟环境

(以 4 台物理服务器搭配 1 台存储系统为例)如图所示,此场景中两种架构的最大差异在于对计算资源的利用率不同:在相同的硬件条件下,计算资源的利用率越高,能获得的节能优势就越大。虚拟化架构通过高度利用 CPU 资源(此场景预设的 CPU 超分比例为 1:4,通常属于中到重度计算需求使用),可将平均每计算核心耗能降低约 74%。

在实际使用场景中,虚拟机部署密度的不同,也会带来不同的节能效果:

存储与计算节点融合部署:再节能约 31%

什么是绿色数据中心?建设路径、实用标准、实践案例

绿色数据中心,是未来数据中心建设的新趋势,旨在提升算力效率的同时,降低能耗,最大化能源利用效益。 它涵盖了节能技术的运用、可再生能源的整合,以及数据中心从选址到运营的全生命周期管理。 《绿色数据中心评价规范》由深圳市市监局发布,为绿色数据中心的建设提供了清晰的指导框架,包括术语定义、评价体系、等级划分、节能指标等,适用于各类规模和业务领域的数据中心,如运营商、互联网、公共机构等。 绿色数据中心的建设路径分为选址、设计与建设、供配电优化、运营管理和降碳五个关键步骤。 选址时,需考虑能源利用效率和自然条件,采用可再生能源;设计上,灵活扩容,避免资源浪费;供配电系统则通过智能化和绿色电力技术提高能效。 在运营阶段,节能理念贯穿始终,通过智能运维、IT设备优化选型等手段,提高整体能效,降低PUE值,减少碳排放。 以工商银行为例,其绿色数据中心建设策略包括:加强规划设计,适应业务需求的灵活性;采用绿色低碳技术,如预制化模块化机房,集成高效能设备和节能技术;并推进基础设施智能运营管理,通过DCIM系统实现能效调优,引入智能巡检机器人提升运维效率。 这些举措不仅提升了数据中心的运营效率,也大大减少了碳足迹。 绿色数据中心的降碳路径强调了可再生能源的广泛应用,比如风能和太阳能,同时通过参与碳交易,实现碳排放的抵消。 在选址时优先考虑可再生能源丰富的地区,通过绿色电力证书等方式,实现对绿色能源的使用。 总的来说,绿色数据中心建设是一场能源效率与可持续性的革命,旨在实现数据中心运营的高效、环保与经济性。 通过科学规划、技术创新和智能管理,我们朝着一个更加绿色、可持续的未来迈进。

数据中心要如何实现节能减排增加能效

我们的研究表明,通过更加严格的管理,公司可以将数据中心的能效提高一倍,从而降低成本并减少温室气体的排放。 具体而言,公司需要更积极地管理技术资产,提高现有服务器的利用率水平;公司还需要更准确地预测业务需求对应用程序、服务器和数据中心设施容量的推动效应,以便控制不必要的资本和运营支出。 数据中心的效率是一个战略问题。 企业建造和运营数据中心花费的资金在公司IT预算中占的比例不断上升,导致用于急需技术项目的预算越来越少。 数据中心建造计划是董事会一级的决策。 同时,监管部门和外部利益相关方也越来越关注公司管理自身碳足迹的方式。 采用最佳实践不仅有助于公司减少污染,还能够提高它们作为良好企业公民的形象。 IT成本高昂如今,公司进行的分析越来越复杂,客户要求实时访问账户,广大员工也在寻找新的技术密集型协作方法。 因此,即使在经济放缓时,人们对于计算、存储和网络容量的需求也在继续增长。 为了应对这一趋势,IT部门正不断增加计算资源。 在美国,数据中心的服务器数量正在以每年约10%的速度增加。 与此同时,在中国和印度等新兴市场,机构正在变得越来越复杂,更多的运营工作实现了自动化,同时有越来越多的外包数据业务在这里进行,因此数据中心的数量呈现出更快的增长态势。 这种对计算资源无法抑制的需求,导致全球数据中心容量稳步上升。 目前,这种增长并没有显露出即将结束的迹象,通常在经济衰退时期它只会进入温和增长状态。 这一增长已经导致了IT成本激增。 如果将设施、存储设备、服务器和人员成本都计算在内,数据中心支出一般会占到企业IT总预算的25%。 随着服务器数量不断增长,电价也正以高于收入和其他IT成本的速度攀升,上述比例只会日益提高。 每年,运行这些设施的成本都在以高达20%的速度上升,而IT总支出的增长速度仅为6%,二者相差极为悬殊。 数据中心支出的不断增加,改变了许多企业的经济结构,尤其是金融、信息服务、媒体和电信公司等信息密集型企业。 在过去5年中,成立一个大型企业数据中心所需的投资已经从1.5亿美元升至5亿美元。 在IT密集型企业中,最大设施的造价正逼近10亿美元。 这一支出挤占了新产品开发的资本,降低了某些数据密集型产品的经济效益,并降低了利润。 此外,不断上升的能耗产生了更多、范围更广的碳足迹,导致了环境恶化。 对于大多数服务行业,数据中心是企业最主要的温室气体排放来源。 在2000到2006年间,用于存储和处理数据的电力翻倍,每个数据设施的平均耗电量相当于2.5万个家庭的总和。 世界上共有4400万台服务器,消耗了总电力的0.5%。 如今,数据中心的碳排放已经接近阿根廷和荷兰等国家的碳排放水平。 仅仅在美国,到2010年数据中心的预计用电增长量就相当于要新建10座电厂的发电量。 目前的预测显示,如果不对需求加以遏制,2020年全球数据中心的碳排放将是现在的4倍。 监管部门已经注意到这些发展趋势,正在督促公司拿出解决方案。 美国环保署(EPA)建议,作为建立运营效率标准的第一步,大型数据中心应当使用能量计。 同时,欧盟也发布了一套自愿执行的行为准则,其中介绍了以较高的能效运行数据中心的最佳实践。 随着数据中心排放量的持续上升,政府可能会为了减排而施加更大的压力。 第2页:全面应对挑战全面应对挑战在信息密集型机构中,许多部门和级别的人员都可以做出影响数据中心运营效率的决策。 金融交易员可以选择运行复杂的蒙特卡洛(MonteCarlo)分析,而药物研究人员可以决定要将多少临床实验影像数据存储起来。 负责应用程序开发的管理人员可以决定用多少编程工作来满足这些需要。 服务器基础设施的管理人员可以做出设备采购决策。 设施主管则可以决定数据中心的位置、电力供应,以及在预测的需求出现前安装设备的时间表。 上述决策通常是在孤立状态下做出的。 销售经理可能会选择将交易由隔夜结算改为即时结算,金融分析师则可能希望为历史数据存储几份副本,他们完全没有考虑到这样做会对数据中心的成本造成什么影响。 应用程序开发人员很少想到要对自身的工作进行优化,以将服务器用量降到最低,也很少考虑开发能够跨服务器共享的设计应用程序。 购买服务器的管理人员可能会选择价格最低或他们最熟悉的产品。 但是这些服务器也许会浪费数据中心的电力或空间。 很多时候,管理人员会超额购买设备,以保证在最极端的使用情况下拥有足够的容量,而这会造成容量过剩。 管理人员往往会建造有多余空间和高制冷容量的设施,以满足极端情况下的需求或应对紧急扩建。 这些决策在整个机构中累加起来,将对成本和环境造成重大影响。 在许多情况下,公司可以在不降低自身数据管理能力的前提下,停用现有的部分服务器,并搁置购买新服务器的计划。 这可以借助一些众所周知的技术来实现。 比如虚拟化,这种技术实际上是通过寻找服务器的空闲部分来运行应用程序,以达到容量共享的目的。 但是公司不一定会这样做,因为没有哪位高管能够承担“端对端”的责任。 在机构内部,管理人员会以最符合自身利益的方式行事,这就造成大多数数据中心效率低下,每台服务器上常常只运行了一个软件应用程序。 我们分析了一家媒体公司的近500台服务器,其中利用率低于3%的占三分之一,而低于10%的则占三分之二。 虽然有诸多用于跟踪使用情况的现成管理工具,但这家公司没有使用其中任何一种。 从全球来看,我们估计服务器的日常利用率一般最高只有5%到10%而已,这造成了能源和资金的浪费。 对此,数据中心管理人员一般会回答,配备这些服务器是为了在极端情况下提供容量,例如应付圣诞节前一天的购物潮。 但一般来说,这一论断并不成立,因为数据显示:如果平均利用率极低,那么高峰时段的利用率也会很低。 此外,数据设施的数量不断攀升,但所存放的服务器和相关设备有时仅占数据设施容量的一半,这说明有上亿美元的资本支出被浪费了。 即使公司报告认为数据中心已经满载,但沿着数据中心的过道行走,经常会发现服务器机架上有很多空位,原先放在这些空位中的设备都已经淘汰。 之所以出现这种不一致的现象,部分原因在于预测数据中心需求的难度很高。 运营的时间框架是一个问题。 数据中心的设计和建造一般需要2年或更长时间,而预计的使用寿命至少为12年,因此容量是在业务部门产生实际需求之前就已经设定的。 与此同时,对于业务决策如何互相影响,如何转化为对新应用程序的需求,以及需要多少服务器容量才能满足需求,还存在着认识不够全面的现象。 例如,如果客户需求增长50%,许多公司很难预测出服务器和数据中心的容量是需要增加25%,还是增加100%。 在极端情况下,我们发现一些设施在投入运营后常年处于半空状态;而另一些公司在建成一个数据中心之后,很快就发觉需要再建一个新的。 如今数据中心已经成为一项昂贵的资产,由此可以推断,财务绩效责任落实得十分糟糕。 设施的财务和管理责任往往会落在不动产管理人员身上,而这些人基本不具备相关的专业技术知识,对于IT与核心业务问题的联系也缺乏深入的认识。 同时,管理服务器运营的人员很少去了解关键运营支出的数据,例如耗电量或IT设备所占不动产的实际成本。 相反,当IT管理人员决定购置更多的应用程序或新的服务器时,有时只会使用硬件初始成本和软件许可证费用等基本指标。 计算实际成本时,需要考虑设施运营和租赁、电力使用、支持以及折旧等因素。 这些费用可能是服务器初始购置成本的4到5倍。 加上前面说到的孤立决策和责任问题,数据中心通常会添加额外的服务器作为保险措施,而很少讨论成本权衡或业务需求。 在缺乏实际成本分析的情况下,过度建造、过度设计和效率低下就成了普遍现象。 第3页:改革运营方式改革运营方式在研究之初,我们以为通过建造新的节能型数据中心,可为降低数据中心的成本和碳排放指出一条光明大道。 新的设施可以发挥当前各种技术的优势,利用自然冷却方法和碳排放较低的电源。 但我们还了解到,在降低成本和碳排放方面成效最显著的方法是改善公司现有数据中心效率低下的状况。 通过改善资产管理,增强管理层的责任意识,并且为降低能源成本和碳排放设立清晰的目标,大多数公司都能够在2012年之前将IT能效提高一倍,并遏制其数据中心温室气体排放的增长。 实际上,您无需另行建造就能获得最环保的数据中心。 积极管理资产一家大型公司采用的做法表明,规范现有服务器和设施的使用就可能产生巨大的收益。 这家公司原本的计划是,增加服务器的数量,并建造一个新的数据中心来容纳这些服务器和其他IT设备,以便满足自身在2010年的信息需求。 该公司的董事会已经批准了这项计划,但这意味着企业在这一年会有大量的资本支出。 于是,这家公司彻底修改了计划。 它将关闭5000多台很少使用的服务器。 通过对占公司应用程序总量15%的3700个应用程序进行虚拟化,可以将现役服务器的数量由2.5万台减少至2万台。 公司还更换了一些较为陈旧的服务器,代之以能够将用电效率提高20%的产品。 这些调整使公司得以搁置原先的数据中心扩建计划,并因此节省了3.05亿美元的资本投资成本。 由于服务器数量和耗电量的下降,运营支出预计将减少4500万美元,降低到7500万美元。 考虑到停用和虚拟化因素,服务器运行时的平均容量利用率将由目前的5.6%升至9.1%。 该公司仍然能够满足自身日益增长的数据需求,但是电力需求的减少,意味着未来4年内的二氧化碳排放将由59.1万吨削减至34.1万吨。 公司还可以通过对不断上升的数据需求加强管理来实现节约。 对于应当保留多少数据,是否要缩减某些数据密集型分析的规模,业务部门应当审查相关的政策。 一些交易的计算可以推迟,以降低服务器在高峰时段的利用率,也并不是所有企业信息都需要基于广泛备份的灾难恢复功能。 更好的预测和规划是提高数据中心效率的基础。 公司应当跟踪自己对数据需求的预测与实际需求之间的差异,然后向能够最大限度减少预测偏差的业务部门提供奖励。 数据中心的管理人员应尽可能全面了解未来的趋势,例如机构增长和业务周期等,然后将这一趋势与自身采用的模型结合起来。 由数据中心、应用架构师和设施操作人员提供的建议可以用于改善这些模型。 一家全球通信公司制定了一套规划流程,将每个业务部门数据增长量的各种发展情况包括在内。 虽然公司最终得出的结论是,它需要扩大容量,但是未来需求中有很大一部分可通过现有资产来满足,这比原计划节约了35%的资本支出。 许多机构并没有将数据中心看作一种稀缺的昂贵资源,而是将其当成了等待注水的水桶。 为了避免这种趋势,公司在估算新服务器或附加应用程序和数据的成本时,可以采用实际拥有成本(TCO)核算法。 业务部门、软件开发人员或IT管理人员在进行支出决策时,很少会将应用程序和服务器的生命周期运行成本考虑在内。 提早计算这些成本,有助于限制过量的需求。 管理这些变化可能十分困难。 大型机构中的许多人并没有意识到数据的成本。 企业的每一个部门都会产生对于数据中心服务的需求。 满足这些需求的责任分散在IT部门(包括运营和应用开发)、设施规划人员、共享服务团队和企业不动产职能部门身上。 成本报告工作并没有统一的标准。 第4页:提高总体效率提高总体效率作为数据中心改进计划的一部分,我们建议采用一项新的指标:企业数据中心平均效率(CADE)。 与美国的企业燃料平均经济性(CAFE)里程标准类似,CADE考虑了数据中心内的设施能效、设施利用率和服务器利用率水平。 将这些因素综合起来,就得到了数据中心的总体效率,即CADE(图)。 减少了成本和碳排放的公司将提高自身数据中心的CADE分数。 这就像在汽车行业中,出色的里程数能够提高CAFE评级一样。 为了给改进工作设立目标,我们将CADE分为五级。 属于CADE第1级的数据中心运营效率最低;大多数机构最初可能都会被归入较低的级别。 关闭利用率低下的服务器、采用虚拟化技术以及提高设施空间的使用效率,都将提高CADE分数。 借助CADE,公司还可以对整个数据中心的设施进行基准比较分析,或者与竞争对手进行比较,也可以为管理人员设立绩效目标并加以跟踪。 在数据中心的需求管理方面,我们建议采用一种由首席信息官全权负责的新治理模型。 在这种体制下,首席信息官能够更为透彻地了解各业务部门的数据需求;对于需要更多服务器或软件应用的新数据项目,他们可以强制要求将能耗和设施成本考虑到相应的投资回报计算中。 我们还建议首席信息官采用一种新的指标来衡量改进情况,请参见副文“提高数据中心的效率”。 通过强化责任,首席信息官将拥有更高的积极性来寻求改进,例如采用虚拟化技术和提高现有设施的利用率。 由于这种模型将关键业务决策的更多责任集中在首席信息官身上,因此不但需要首席执行官的全力支持,而且要求机构转变以往对于业务部门的数据中心扩容请求有求必应的思维模式。 此外,首席信息官还应当设定将数据中心的能效提高

数据库系统建设需要依据哪些行业和国家标准或规范?

你要是数据中心机房建设请参照一下标准:1<<电子信息系统机房设计规范>>GB -<<电子信息系统机房施工及验收规范>>GB -<<电子计算机场地通用规范>>GB/T 2887-<<防静电活动地板通用规范>>SJ/T-<<通风与空调工程质量验收规范>>GB -<<火灾自动报警系统设计规范>>GB -<<火灾自动报警系统施工及验收规范>>GB -<<供配电系统设计规范>>GB -<<建筑电气工程施工质量验收规范>>GB -<<建筑物电子信息系统防雷技术规范>>GB -<<建筑物防雷设计规范>>GB -<<综合布线系统工程设计规范>>GB/T-<<综合布线系统工程验收规范>>GB/T-2007注: 数据中心建设不牵扯民用标准。 。 DXJS 标准是电信标准,看你是什么行业,金融数据中心有自己的标准, 电力数据中心有自己的标准。

数字孪生为数据中心插上“可持续”的翅膀

为了能以更加可持续的方式运营企业,企业对数字基础设施的要求也越来越高,不止是出于成本和效率的考量,从环境的角度也是如此。

Equinix全球IBX运营工程副总裁Arno van Gennip表示:“从设计到施工再到设施管理,数字孪生正成为提高数据中心效率和减少客户碳排放的关键。”

数字孪生有助于将来自不同重点领域的数据集中到共享环境中,这使得IT、工程、财务、采购、施工团队能够在流程中,更早地 探索 和模拟性能、财务和环境等各种因素之间的权衡。设备和空间利用方面的各种效率提升,带来的直接影响就是降低能耗和减少碳排放。数字孪生还有助于提高建设和运营效率,减少浪费、降低人员配备要求和相关环境影响。

很多企业和数据中心运营商(例如Nvidia)可能会从各种结合了工程、CAD和数据中心信息管理(DCIM)功能的仿真建模工具中打造出数字孪生工作流。越来越多的DCIM厂商(例如施耐德电气)将数字孪生功能直接引入他们的工具中。达索系统和Future Facilities等厂商为数据中心提供了集成度更高的数字孪生。Nvidia等厂商也开始推出Nvidia Air这样用于优化数据中心物理和逻辑布局的新工具。

投入运营中

Equinix与Future Facilities展开合作,面向企业数据中心构建数字孪生。数字孪生可以帮助工程师确保冷却系统和连接生态系统提供所需的容量和最佳效率。工程师可以对比数据中心的预期行为和实际行为,以及能源使用的情况。

“这让我们能够深入了解有关维护和优化能源效率的各种可能性,”van Gennip说。

Equinix工程师和合作伙伴一起构建了物理数据中心的3D模型。这种数据中心孪生模型是基于各种因素建模的,例如数据中心内计算设备的容量和密度,以及冷却系统的路径。集中式数字孪生平台可以帮助工程师使用实时数据(例如功率和温度)预测预计的变更对配电、空间利用和冷却路径可能带来的影响,这些实时数据整合到现有模型中,用于进行准确的分析和预测,从而使数据中心孪生可以通过预测能源需求提高效率

达索和很多领先的超大规模数据中心企业展开合作,设计和建造下一代数据中心。

“他们面临的最大挑战就是如何缩短项目准备时间,以跟上不断增长的需求,以及如何通过减少建设和运营期间的能源、水消耗和浪费,让数据中心更具可持续性,”达索公司架构、工程和建筑(AEC)行业销售战略总监Marty Rozmanith这样表示。

让管理更轻松

数据中心房地产投资信托公司Digital Realty的全球建筑管理优化总监Kasper Dessing认为,以前数据中心管理被分成多个孤岛,每个孤岛都专注于管理设施的某一个方面。

因此,不同领域的管理者可能无法看到更大的格局。无论是现在还是将来,在考虑设施维护的时候,这一点都尤为重要。数据中心会产生大量的数据,而人类无法很好地捕获、汇集和管理这些数据。随着数字服务变得越来越复杂,这种情况只会变得越来越糟糕。

Dessing说:“通过数字孪生,我们能够以虚拟的方式呈现设施内的各种元素和各种动态,以及在各种操作场景下实时模拟实际行为。”

Digital Realty发现,由于数据量庞大,并且不同组件之间存在相互依赖性,因此通用数据中心的运营情况还不够好。正因为如此,Digital Realty将他们的设施数字孪生和专有的人工智能和机器学习平台进行集成,分析数千个数据流,从而能够跟踪设施内的所有组件并进行实时调整,还可以对未来行为进行预测,从而展开预测性维护,节省时间和降低成本。

这种对设施和不同组件之间关系的可见性,有助于改进新的设施设计,使其更高效。不仅如此,Digital Realty还利用数字孪生和他们的人工智能平台来优化能源消耗。

Dessing说:“可持续性是我们的首要任务,优化每个设施的能耗有助于我们在降低成本的同时,减少对环境的影响。”

并非所有人都具备在决策的同时进行模拟的这一技术专长,因此,Digital Realty将一种推荐引擎集成到了他们的数字孪生平台中。

“这样就可以让更多的人使用该技术,而不必一直依赖专家。”

把碎片组合在一起

设计、建造和运营数据中心的过程中会产生大量的数据,这些数据被保存为不同的格式,存储在不同的系统中。Rozmanith说,通过适当的访问控制和变更管理来管理和组织数据,这非常有挑战性。数字孪生可以带来多个学科、不同发展水平(LOD)和多个维度的数据,这让不同利益相关者可以实时地围绕单一事实来源展开协作。那些更为复杂的数字孪生技术则结合了各种技术,使用一种集成数字孪生来模拟热、结构、电气、控制和监控、制造和组装等过程。

埃森哲云首席技术专家Teresa Tung表示:“随着我们整合更多数据和模拟来连接工程设计、施工调度和运营流程,不同的数字孪生之间的互操作性已经变成了一大挑战。”

Tung的团队正在与数据中心厂商展开合作,将数据和领域专业知识应用于分析过程中,以确定驱动假设预测所需的模拟数量和配置,他们使用领域知识图(和用于互联网搜索中的技术相同)来捕获这些需求并映射不同元素之间的关系。

施耐德战略计划总监和解决方案架构师Carsten Baumann表示,提供商越来越多地向DCIM工具中添加数字孪生功能,以便在实际实施部署之前对基础设施升级可能带来的影响进行模拟。他认为,开放标准可以简化数据中心设备和管理工具之间的集成,从而可以更轻松地将数字孪生作为日常数据中心工作流程的一部分。

下面就让我们来详细看一看,数字孪生提高设计、施工、运营和规划可持续性的19种方式:

设计

放置新服务器

“也许在数据中心行业,使用数字孪生技术带来的最大影响就是气流管理和IT设备放置问题了,”Baumann说。

部署计算、存储和网络资源的需求快速增长,随之而来的是基础设施上的巨大挑战。特定机架或者特定位置还有物理空间,并不意味着有足够的电源、接入和散热能力。

看似简单的安装部署,可能需要对电源进行重大升级或者更好的替代方案时,数字孪生就可以帮得上忙了。

增加密度

增加数据中心的设备密度,可以减少新设施对气候带来的影响。

Information Services Group(ISG)企业敏捷性总监Loren Absher表示,数字孪生有助于优化数据中心设计,改善电源、布线、冷却要求、气流甚至活动地板完整性等所有相关元素,以防止灾难性故障的发生,此外还可以为增加密度所需的物理工作流程变更提供帮助。

提高热性能

冷却是数据中心的第二大能源消耗因素,仅次于设备本身。现代数据中心的冷却系统包括冷却器、管道和HVAC设备。

数字孪生可以使用热模拟来了解冷却系统的行为并提高其性能。

Rozmanith说,有些经常将代表冷水机组数量和管道尺寸变化的设备链的1D模拟,与气流的3D计算流体动力学(CFD)分析结合起来,找到冷空气和设备冷却之间的最佳平衡,以优化能源消耗。

评估季节性影响

Techstrong ReSearch董事总经理、联合创始人Dan Kirsch表示,数字孪生还可以帮助数据中心设计师更好地规划季节性气候变化,让设计师可以根据外部季节性气候变化的影响提前规划,以降低总体运营成本和能耗。

“数字孪生让我们可以根据客户的特定需求和现场条件进行真正的定制和优化设计,而无需进行实地实验,”Kirsch说。

创建模块化组件

达索与大型数据中心运营商展开合作,打造了可以在不同数据中心设计中重复使用的模块化组件。

Rozmanith表示,数字孪生可以帮助企业定义和配置这些模块的属性,从而通过按订单配置的方法,缩短设计、采购和安装时间,从而有助于减少新建数据中心的环境影响。

测试和验证设备

NTT全球数据中心美洲产品高级副总裁Bruno Berti表示,他们正在使用数字孪生来测试和验证设备,然后再将其部署到数据中心内。

这些新的工作流程让他们可以构建和测试电气和发电机模块,这样工程师就可以在产品投入生产之前发生任何潜在的过程故障,减少了废弃物对环境的影响并改进了风险评估,加速了新产品的开发,提高了数据中心的可靠性和弹性。此外,数字孪生还有助于安排预测性维护,降低维护成本。

优化电池性能

数据中心设备生产企业Vertiv的首席创新官Greg Ratcliff表示,数字孪生可以用于建模和设计系统,以改善电池 健康 状况和预期寿命,从而减少制造新电池带来的环境影响。在这种情况下,数字孪生可以帮助团队使用电池 健康 测量和设施详细信息,来模拟不同的设计选择,预测每个电池的 健康 状况和使用寿命。

Ratcliff表示:“如果电池组中的单个电池出现故障,那么整个电池组都会出现故障,所以监控每个电池的运行状况是至关重要的。”

评估环保型替代品

数据中心运营商可以利用数字孪生技术来评估新方法的性能、环境效益和潜在缺陷。

例如,Kao Data利用数字孪生工具来虚拟地测试和部署无制冷剂间接蒸发冷却(IEC)系统,该系统使用水蒸发代替机械系统在炎热天气冷却空气。这种方法帮助Kao Data提高了电力利用效率,减少了对环境的影响。

建筑

精简施工

数字孪生可以模拟复杂的任务、装配、设备使用和人身安全,还可以改善供应商、集成商和承包商在设计和施工生态系统中的协作,以消除流程中的摩擦。

Rozmanith说,更好地模拟和协作,可以缩短施工时间、减少问题发生、避免返工、以及减少信息请求和安全事故的数量,这帮助达索的客户将面市时间平均缩短了10-15%,减少了与施工时间较长可能带来的环境影响。

减少建筑废品

数据中心设计师正在使用数字孪生来更好地规划施工,以便工作人员可以更高效地工作,减少浪费,缩短不同施工阶段之间的时间。

Kirsch说:“通过创建数据中心的虚拟模型以及完整的材料清单,设计人员可以优化施工人员组装数据中心的每一个细节。”

这种规划方法可以减少一个团队在其他团队完成任务等候的时间。而通常来说,减少数据中心建设过程中的浪费并非易事,Kirsch说,这个过程中很多组件是无法重复使用或者回收的,最终只能进入废品填埋场。

运营

提供维护建议

数字孪生有助于确定问题的根本原因,并为快速修复提供维护建议,以减少能耗。

例如,Equinix位于阿姆斯特丹的工厂采用了一种数字孪生模型,根据模型显示,他们必须清洁冷却塔和调整风扇,以前这两项维护的能耗都要高于模型预期的水平。van Gennip表示,数字孪生让已经比较高效的数据中心IBX能源效率进一步提高了10%。

延长资产寿命

达索的虚拟数字孪生可以将人工智能和机器学习算法的操作数据情境化,用于改进预测性维护。Rozmanith说,这延长了设备的使用寿命,从而减少了电子废品。而且,虚拟孪生还可以通过提高冷却和电力系统的效率来优化能源和水的使用。

提高维护和维修效率

数字孪生可以对维护、维修和翻新所需的所有信息访问进行简化,包括访问文档、用户手册、维护手册、材料供应商信息和备件清单等信息。Vertiv定制空气处理和模块化解决方案副总裁Lorenz Hofmann表示,这可以节省时间和减少工作量,从而减少二氧化碳的排放量。

数据中心流程自动化

流程挖掘功能的改进,可以帮助数据中心领导者了解他们的团队如何与应用进行交互,并对数据中心环境的变化做出反应。

ABBYY流程智能高级总监Ryan Raiker表示,使用数字孪生理解和记录程序,有助于数据中心团队发现候选的自动化方法,还可以实施不同的协议,以便在故障实际发生时采取行动,确保数据中心正常运行并减少故障和浪费的发生。

改善托管服务提供商和企业之间的协作

托管数据中心可以让多个企业共享同一个数据中心,但是当企业客户决定安装新设备的事后,可能会对周边其他企业的设备产生电力、热量和重量上的影响。

法国Thésée DataCenter与Future Forward展开合作,在云中部署每个设施的数字孪生,这种数字孪生让客户能够通过Web服务端模拟他们自己或者附近设备预期变更可能带来的影响,从而有助于Thésée的工程师与客户展开协作,提高他们的数据中心空间使用率,减少建设新数据中心的需求。

规划

确保满足合规性要求

NTT正在研究通过数据孪生帮助企业收集与业务相关的数据,并对这些数据实施标准化。数据孪生将企业数据源及其相互关系复制为标准格式,为分析和报告提供一个集中的位置。

NTT Data Services SMART解决方案副总裁Bennett Indart表示,这将有助于提供数据中心在实现可持续发展目标方面取得的进展,以及发现新的机会进行改善。

改善财务决策

NTT公司的Berti表示,NTT已经开始把财务数据整合到他们的数字孪生中,这有助于NTT在计划过程中使用实时数据和高级分析功能来审查材料和人工成本。

此外,这还有助于确定调整制造价值链从财务方面看是否合理,以及预期结果是否会降低数据中心的运营成本。

评估数据中心迁移带来的影响

埃森哲与卡内基梅隆大学合作开发了一个名为myNav Green Cloud Advisor的数字孪生模型,该模型让企业可以衡量数据中心和云提供商之间迁移的可持续性影响。

埃森哲的Tung表示,该项目最开始是一个数字孪生,以当前数据中心的能源消耗、计算要求和可持续发展目标为基准,让企业可以规划和对比各种云解决方案,包括碳排放目标、位置、能源和向清洁能源过渡的准备情况。

了解实质性的影响

Kirsch说,在建设完成之前,通常很难知道数据中心内的实际材料清单。在数据中心建设期间,团队会遇到各种可能需要偏离最初设计的情况。设计团队可以使用数字孪生规划所有现场条件,并指定所需的材料。

Kirsch说:“通过制定准确的材料清单,数据中心创建者和最终用户可以在施工开始之前就充分地了解需要使用的材料,以及对整体可持续性目标的影响。”


相关标签: 降低能耗实现可持续运营行业标准数据库行业标准数据中心

本文地址:http://www.hyyidc.com/article/24684.html

上一篇:使用行业标准数据中心设计和构建未来的基础...
下一篇:行业标准数据中心提高可扩展性和适应性行业...

温馨提示

做上本站友情链接,在您站上点击一次,即可自动收录并自动排在本站第一位!
<a href="http://www.hyyidc.com/" target="_blank">好有缘导航网</a>