随着信息技术的迅猛发展,大规模数据中心在全球范围内如雨后春笋般涌现。
这些数据中心承载着海量的数据,为各种业务提供强大的支持。
随之而来的电能消耗问题也日益凸显,成为了亟待解决的重要课题。
本文旨在探究大规模数据中心的电能消耗问题,通过对其电能消耗相关的各项指标进行分析,提出节能减排的建议,以期在促进数据中心发展的同时,减少其对环境的负面影响。
大规模数据中心是一种集中存储和管理大量数据的场所,通常由数以万计的服务器、存储设备、网络设备和冷却设备等组成。
这些设备在持续运行的过程中,会产生巨大的电能消耗。
大规模数据中心具有高密度、高能效和高可靠性的特点,为云计算、大数据等业务的快速发展提供了强有力的支撑。
大规模数据中心的主要功耗来源包括服务器、存储设备、网络设备和冷却设备等。
其中,服务器的功耗占据主导地位,其他设备如交换机、路由器等也占有相当大的比重。
冷却设备的功耗也是不容忽视的,因为数据中心的高密度特性导致设备产生大量热量,需要高效的冷却系统来维持设备的正常运行。
为了评估数据中心的能耗效率,通常采用功率使用效率(PUE)这一指标。
PUE是指数据中心的总能耗与IT设备能耗之比。
理想的PUE值应为1,意味着所有消耗的电能都直接用于IT设备,但实际上由于各种因素(如冷却系统、照明等)的影响,PUE值通常大于1。
降低PUE值是数据中心节能减排的重要目标。
大规模数据中心的能源消耗量巨大,相应的能源成本也成为了运营过程中的一大支出。
能源消耗量与数据中心的规模、设备效率、运营方式等多种因素有关。
为了降低能源成本,许多数据中心开始采用绿色能源,如太阳能、风能等,以减轻对传统电网的压力。
大规模数据中心的高能耗主要源于设备功耗、数据中心设计和管理等方面。
设备功耗的高低直接决定数据中心的能耗水平;数据中心设计如布局、通风等也会影响能耗;管理策略如设备运行时间、温度控制等也会对能耗产生影响。
当前,大规模数据中心的能耗问题已经成为业界关注的焦点。
随着数据中心的规模不断扩大,能耗量也在不断增长,这给能源供应和环境带来了巨大的压力。
同时,高能耗也导致了运营成本的增加,影响了数据中心的竞争力。
因此,降低数据中心的能耗,提高其能效已经成为业界亟待解决的问题。
选择能效高、功耗低的设备是降低数据中心能耗的关键。
同时,合理搭配设备,使其在满足业务需求的同时,尽量降低能耗。
优化数据中心的布局、通风等设计,以降低其能耗。
例如,采用热通道封闭技术、自然冷却技术等,减少冷却系统的能耗。
通过智能化管理系统,实时监控数据中心的运行状态,调整设备运行时间和温度等参数,以降低能耗。
同时,定期对设备进行维护,提高其运行效率。
采用太阳能、风能等绿色能源,为数据中心提供清洁的电力支持,降低对传统电网的依赖,减少碳排放。
大规模数据中心的电能消耗问题是一个复杂的课题,需要我们从设备、设计、管理等多个方面入手,降低其能耗,提高其能效。
通过优化设备配置、提高设计水平、加强管理和利用绿色能源等措施,我们可以在促进数据中心发展的同时,减少其对环境的负面影响。
地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。 变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。 因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。 假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的地理数据矩阵:如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问题,自然要在p维空间中加以考察,这是比较麻烦的。 为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。 那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为x1,x2,…,xp,它们的综合指标——新变量指标为x1,x2,…,zm(m≤p)。 则在(2)式中,系数lij由下列原则来决定:(1)zi与zj(i≠j;i,j=1,2,…,m)相互无关;(2)z1是x1,x2,…,xp的一切线性组合中方差最大者;z2是与z1不相关的x1,x2,…,xp的所有线性组合中方差最大者;……;zm是与z1,z2,……zm-1都不相关的x1,x2,…,xp的所有线性组合中方差最大者。 这样决定的新变量指标z1,z2,…,zm分别称为原变量指标x1,x2,…,xp的第一,第二,…,第m主成分。 其中,z1在总方差中占的比例最大,z2,z3,…,zm的方差依次递减。 在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。 从以上分析可以看出,找主成分就是确定原来变量xj(j=1,2,…,p)在诸主成分zi(i=1,2,…,m)上的载荷lij(i=1,2,…,m;j=1,2,…,p),从数学上容易知道,它们分别是x1,x2,…,xp的相关矩阵的m个较大的特征值所对应的特征向量。 第二节 主成分分析的解法主成分分析的计算步骤通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:(1)计算相关系数矩阵在公式(3)中,rij(i,j=1,2,…,p)为原来变量xi与xj的相关系数,其计算公式为因为R是实对称矩阵(即rij=rji),所以只需计算其上三角元素或下三角元素即可。 (2)计算特征值与特征向量首先解特征方程|λI-R|=0求出特征值λi(i=1,2,…,p),并使其按大小顺序排列,即λ1≥λ2≥…,≥λp≥0;然后分别求出对应于特征值λi的特征向量ei(i=1,2,…,p)。 (3)计算主成分贡献率及累计贡献率一般取累计贡献率达85-95%的特征值λ1,λ2,…,λm所对应的第一,第二,……,第m(m≤p)个主成分。 (4)计算主成分载荷由此可以进一步计算主成分得分:第三节 主成分分析应用实例主成分分析实例对于某区域地貌-水文系统,其57个流域盆地的九项地理要素:x1为流域盆地总高度(m)x2为流域盆地山口的海拔高度(m),x3为流域盆地周长(m),x4为河道总长度(km),x5为河表2-14 某57个流域盆地地理要素数据道总数,x6为平均分叉率,x7为河谷最大坡度(度),x8为河源数及x9为流域盆地面积(km)的原始数据如表2-14所示。 张超先生(1984)曾用这些地理要素的原始数据对该区域地貌-水文系统作了主成分分析。 下面,我们将其作为主成分分析方法在地理学研究中的一个应用实例介绍给读者,以供参考。 表2-15相关系数矩阵(1)首先将表2-14中的原始数据作标准化处理,由公式(4)计算得相关系数矩阵(见表2-15)。 (2)由相关系数矩阵计算特征值,以及各个主成分的贡献率与累计贡献率(见表2-16)。 由表2-16可知,第一,第二,第三主成分的累计贡献率已高达86.5%,故只需求出第一,第二,第三主成分z1,z2,z3即可。 表2-16 特征值及主成分贡献率(3)对于特征值λ1=5.043,λ2=1.746,λ3=0.997分别求出其特征向量e1,e2,e3,并计算各变量x1,x2,……,x9在各主成分上的载荷得到主成分载荷矩阵(见表2-17)。 表2-17 主成分载荷矩阵从表2-17可以看出,第一主成分z1与x1,x3,x4,x5,x8,x9有较大的正相关,这是由于这六个地理要素与流域盆地的规模有关,因此第一主成分可以被认为是流域盆地规模的代表:第二主成分z2与x2有较大的正相关,与x7有较大的负相关,而这两个地理要素是与流域切割程度有关的,因此第二主成分可以被认为是流域侵蚀状况的代表;第三主成分z3与x6有较大的正相关,而地理要素x6是流域比较独立的特性——河系形态的表征,因此,第三主成成可以被认为是代表河系形态的主成分。 以上分析结果表明,根据主成分载荷,该区域地貌-水文系统的九项地理要素可以被归为三类,即流域盆地的规模,流域侵蚀状况和流域河系形态。 如果选取其中相关系数绝对值最大者作为代表,则流域面积,流域盆地出口的海拔高度和分叉率可作为这三类地理要素的代表,利用这三个要素代替原来九个要素进行区域地貌-水文系统分析,可以使问题大大地简化。 二、内梅罗水质指数污染表1 内梅罗水质指数污染等级划分标准P<11~22~33~5>5水质等级清洁轻污染污染重污染严重污染表2 地表水环境质量标准(GB3838—2002) 单位:mg/L序 号项 目V类标准值1水温(℃)—2PH值(无量纲)6—93溶解氧 ≥24高锰酸盐指数 ≤155化学需氧量 ≤406五日生化需氧量 ≤107氨氮≤2.08总磷≤0.49总氮≤2.010铜≤1.011锌≤2.012氟化物 ≤1.513硒≤0.0214砷≤0.115汞≤0.镉≤0.0117铬(六价) ≤0.118铅≤0.119氰化物 ≤0.220挥发酚 ≤0.121石油类 ≤1.022硫化物 ≤1.023粪大肠菌群(个/L) ≤表3 水质评价计算方法单因子污染指数Pi = Ci/ SiCi——第i项污染物的监测值; Si——第i项污染物评价标准值;溶解氧指数Cf——对应温度T时的饱和溶解氧浓度;Ci——溶解氧浓度监测值;Si——溶解氧评价标准值;pH指数pHi——pH监测值;pHS,min——评价标准值的下限;pHS,max ——评价标准值的上限;污染物超标倍数Ci ——第i项污染物的监测值;C0 ——第i项污染物评价标准值;内梅罗指数Pmax ——单因子污染指数的最高值;Pi ——第i项污染物的污染指数;n ——参与评价污染物的项数;常用的客观赋权法之一:熵值法熵是信息论中测度一个系统不确定性的量。 信息量越大,不确定性就越小,熵也越小,反之,信息量越小,不确定性就越大,熵也越大。 熵值法主要是依据各指标值所包含的信息量的大小,利用指标的熵值来确定指标权重的。 熵值法的一般步骤为:(1)、对决策矩阵作标准化处理,得到标准化矩阵,并进行归一化处理得:(2)、计算第个指标的熵值:。 其中。 (3)、计算第个指标的差异系数。 对于第个指标,指标值的差异越大,对方案评价的作用越大,熵值越小,反之,差异越小,对方案评价的作用越小,熵值就越大。 因此,定义差异系数为:。 (4)、确定指标权重。 第个指标的权重为:。 效益型和成本型指标的标准化方法对于效益型(正向)指标和成本型(逆向)指标,由于这两者是最常见并且使用最广泛的指标,所以,对这两种指标标准化处理的方法也最多,一般的处理方法有:1. 极差变换法该方法即在决策矩阵中,对于效益型指标,令=对于成本型指标,令=则得到的矩阵称为极差变换标准化矩阵。 其优点为经过极差变换后,均有,且各指标下最好结果的属性值,最坏结果的属性值。 该方法的缺点是变换前后的各指标值不成比例。 2. 线性比例变换法即在决策矩阵中,对于效益型指标,令=对成本型指标,令=或=则矩阵称为线性比例标准化矩阵。 该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例。 但对任一指标来说,变换后的和不一定同时出现。 3. 向量归一化法即在决策矩阵中,对于效益型指标,令对于成本型指标,令则矩阵称为向量归一标准化矩阵。 显然,矩阵的列向量的模等于1,即。 该方法使,且变换前后正逆方向不变,缺点是它是非线性变换,变换后各指标的最大值和最小值不相同。 4. 标准样本变换法在中,令其中,样本均值,样本均方差,则得出矩阵,称为标准样本变换矩阵。 经过标准样本变换之后,标准化矩阵的样本均值为,方差为。 5. 等效系数法对成本型指标,令=该方法的优点是变换前后的指标值成比例,缺点是各指标下方案的最好与最差指标值标准化后不完全相同。 另外,关于效益型指标的标准化处理还有:=关于成本型指标的标准化处理还有:=固定型指标的标准化方法对于固定型指标,若设为给定的固定值,则标准化处理的方法主要有以下几种,即令或或或(4.15)式的特点是各最优属性值标准化后的值均为1,而各最差属性的值标准化后的值不统一,即不一定都为0。 若设和分别是人为规定的最优方案和最劣方案,在该情形下,还给出了效益型、成本型和固定型指标的新的标准化方法。 对效益型和成本型,有:对固定型指标则有:区间型指标的标准化方法对区间型的指标,其指标标准化处理的方法主要有以下几式:设,令或令显然,还可以简化为:或令或令其中,是指给定的某个固定区间,即属性值越接近该区间越好。 偏离型指标的标准化方法对越来越偏离某值越好的偏离性指标,一般有如下标准化公式:或令(对都有)或令偏离型指标是与固定型指标相对立的一种指标类型,它的公式使用可以用固定型指标的公式改造,但在使用时要注意其公式的适用范围。 偏离区间型指标的标准化方法对偏离区间型指标,有如下标准化的方法:令或令或令其中,是某个固定区间,属性值越偏离该区间越好。 偏离区间型指标是与区间型指标相对立的一种指标类型。
我们的研究表明,通过更加严格的管理,公司可以将数据中心的能效提高一倍,从而降低成本并减少温室气体的排放。 具体而言,公司需要更积极地管理技术资产,提高现有服务器的利用率水平;公司还需要更准确地预测业务需求对应用程序、服务器和数据中心设施容量的推动效应,以便控制不必要的资本和运营支出。 数据中心的效率是一个战略问题。 企业建造和运营数据中心花费的资金在公司IT预算中占的比例不断上升,导致用于急需技术项目的预算越来越少。 数据中心建造计划是董事会一级的决策。 同时,监管部门和外部利益相关方也越来越关注公司管理自身碳足迹的方式。 采用最佳实践不仅有助于公司减少污染,还能够提高它们作为良好企业公民的形象。 IT成本高昂如今,公司进行的分析越来越复杂,客户要求实时访问账户,广大员工也在寻找新的技术密集型协作方法。 因此,即使在经济放缓时,人们对于计算、存储和网络容量的需求也在继续增长。 为了应对这一趋势,IT部门正不断增加计算资源。 在美国,数据中心的服务器数量正在以每年约10%的速度增加。 与此同时,在中国和印度等新兴市场,机构正在变得越来越复杂,更多的运营工作实现了自动化,同时有越来越多的外包数据业务在这里进行,因此数据中心的数量呈现出更快的增长态势。 这种对计算资源无法抑制的需求,导致全球数据中心容量稳步上升。 目前,这种增长并没有显露出即将结束的迹象,通常在经济衰退时期它只会进入温和增长状态。 这一增长已经导致了IT成本激增。 如果将设施、存储设备、服务器和人员成本都计算在内,数据中心支出一般会占到企业IT总预算的25%。 随着服务器数量不断增长,电价也正以高于收入和其他IT成本的速度攀升,上述比例只会日益提高。 每年,运行这些设施的成本都在以高达20%的速度上升,而IT总支出的增长速度仅为6%,二者相差极为悬殊。 数据中心支出的不断增加,改变了许多企业的经济结构,尤其是金融、信息服务、媒体和电信公司等信息密集型企业。 在过去5年中,成立一个大型企业数据中心所需的投资已经从1.5亿美元升至5亿美元。 在IT密集型企业中,最大设施的造价正逼近10亿美元。 这一支出挤占了新产品开发的资本,降低了某些数据密集型产品的经济效益,并降低了利润。 此外,不断上升的能耗产生了更多、范围更广的碳足迹,导致了环境恶化。 对于大多数服务行业,数据中心是企业最主要的温室气体排放来源。 在2000到2006年间,用于存储和处理数据的电力翻倍,每个数据设施的平均耗电量相当于2.5万个家庭的总和。 世界上共有4400万台服务器,消耗了总电力的0.5%。 如今,数据中心的碳排放已经接近阿根廷和荷兰等国家的碳排放水平。 仅仅在美国,到2010年数据中心的预计用电增长量就相当于要新建10座电厂的发电量。 目前的预测显示,如果不对需求加以遏制,2020年全球数据中心的碳排放将是现在的4倍。 监管部门已经注意到这些发展趋势,正在督促公司拿出解决方案。 美国环保署(EPA)建议,作为建立运营效率标准的第一步,大型数据中心应当使用能量计。 同时,欧盟也发布了一套自愿执行的行为准则,其中介绍了以较高的能效运行数据中心的最佳实践。 随着数据中心排放量的持续上升,政府可能会为了减排而施加更大的压力。 第2页:全面应对挑战全面应对挑战在信息密集型机构中,许多部门和级别的人员都可以做出影响数据中心运营效率的决策。 金融交易员可以选择运行复杂的蒙特卡洛(MonteCarlo)分析,而药物研究人员可以决定要将多少临床实验影像数据存储起来。 负责应用程序开发的管理人员可以决定用多少编程工作来满足这些需要。 服务器基础设施的管理人员可以做出设备采购决策。 设施主管则可以决定数据中心的位置、电力供应,以及在预测的需求出现前安装设备的时间表。 上述决策通常是在孤立状态下做出的。 销售经理可能会选择将交易由隔夜结算改为即时结算,金融分析师则可能希望为历史数据存储几份副本,他们完全没有考虑到这样做会对数据中心的成本造成什么影响。 应用程序开发人员很少想到要对自身的工作进行优化,以将服务器用量降到最低,也很少考虑开发能够跨服务器共享的设计应用程序。 购买服务器的管理人员可能会选择价格最低或他们最熟悉的产品。 但是这些服务器也许会浪费数据中心的电力或空间。 很多时候,管理人员会超额购买设备,以保证在最极端的使用情况下拥有足够的容量,而这会造成容量过剩。 管理人员往往会建造有多余空间和高制冷容量的设施,以满足极端情况下的需求或应对紧急扩建。 这些决策在整个机构中累加起来,将对成本和环境造成重大影响。 在许多情况下,公司可以在不降低自身数据管理能力的前提下,停用现有的部分服务器,并搁置购买新服务器的计划。 这可以借助一些众所周知的技术来实现。 比如虚拟化,这种技术实际上是通过寻找服务器的空闲部分来运行应用程序,以达到容量共享的目的。 但是公司不一定会这样做,因为没有哪位高管能够承担“端对端”的责任。 在机构内部,管理人员会以最符合自身利益的方式行事,这就造成大多数数据中心效率低下,每台服务器上常常只运行了一个软件应用程序。 我们分析了一家媒体公司的近500台服务器,其中利用率低于3%的占三分之一,而低于10%的则占三分之二。 虽然有诸多用于跟踪使用情况的现成管理工具,但这家公司没有使用其中任何一种。 从全球来看,我们估计服务器的日常利用率一般最高只有5%到10%而已,这造成了能源和资金的浪费。 对此,数据中心管理人员一般会回答,配备这些服务器是为了在极端情况下提供容量,例如应付圣诞节前一天的购物潮。 但一般来说,这一论断并不成立,因为数据显示:如果平均利用率极低,那么高峰时段的利用率也会很低。 此外,数据设施的数量不断攀升,但所存放的服务器和相关设备有时仅占数据设施容量的一半,这说明有上亿美元的资本支出被浪费了。 即使公司报告认为数据中心已经满载,但沿着数据中心的过道行走,经常会发现服务器机架上有很多空位,原先放在这些空位中的设备都已经淘汰。 之所以出现这种不一致的现象,部分原因在于预测数据中心需求的难度很高。 运营的时间框架是一个问题。 数据中心的设计和建造一般需要2年或更长时间,而预计的使用寿命至少为12年,因此容量是在业务部门产生实际需求之前就已经设定的。 与此同时,对于业务决策如何互相影响,如何转化为对新应用程序的需求,以及需要多少服务器容量才能满足需求,还存在着认识不够全面的现象。 例如,如果客户需求增长50%,许多公司很难预测出服务器和数据中心的容量是需要增加25%,还是增加100%。 在极端情况下,我们发现一些设施在投入运营后常年处于半空状态;而另一些公司在建成一个数据中心之后,很快就发觉需要再建一个新的。 如今数据中心已经成为一项昂贵的资产,由此可以推断,财务绩效责任落实得十分糟糕。 设施的财务和管理责任往往会落在不动产管理人员身上,而这些人基本不具备相关的专业技术知识,对于IT与核心业务问题的联系也缺乏深入的认识。 同时,管理服务器运营的人员很少去了解关键运营支出的数据,例如耗电量或IT设备所占不动产的实际成本。 相反,当IT管理人员决定购置更多的应用程序或新的服务器时,有时只会使用硬件初始成本和软件许可证费用等基本指标。 计算实际成本时,需要考虑设施运营和租赁、电力使用、支持以及折旧等因素。 这些费用可能是服务器初始购置成本的4到5倍。 加上前面说到的孤立决策和责任问题,数据中心通常会添加额外的服务器作为保险措施,而很少讨论成本权衡或业务需求。 在缺乏实际成本分析的情况下,过度建造、过度设计和效率低下就成了普遍现象。 第3页:改革运营方式改革运营方式在研究之初,我们以为通过建造新的节能型数据中心,可为降低数据中心的成本和碳排放指出一条光明大道。 新的设施可以发挥当前各种技术的优势,利用自然冷却方法和碳排放较低的电源。 但我们还了解到,在降低成本和碳排放方面成效最显著的方法是改善公司现有数据中心效率低下的状况。 通过改善资产管理,增强管理层的责任意识,并且为降低能源成本和碳排放设立清晰的目标,大多数公司都能够在2012年之前将IT能效提高一倍,并遏制其数据中心温室气体排放的增长。 实际上,您无需另行建造就能获得最环保的数据中心。 积极管理资产一家大型公司采用的做法表明,规范现有服务器和设施的使用就可能产生巨大的收益。 这家公司原本的计划是,增加服务器的数量,并建造一个新的数据中心来容纳这些服务器和其他IT设备,以便满足自身在2010年的信息需求。 该公司的董事会已经批准了这项计划,但这意味着企业在这一年会有大量的资本支出。 于是,这家公司彻底修改了计划。 它将关闭5000多台很少使用的服务器。 通过对占公司应用程序总量15%的3700个应用程序进行虚拟化,可以将现役服务器的数量由2.5万台减少至2万台。 公司还更换了一些较为陈旧的服务器,代之以能够将用电效率提高20%的产品。 这些调整使公司得以搁置原先的数据中心扩建计划,并因此节省了3.05亿美元的资本投资成本。 由于服务器数量和耗电量的下降,运营支出预计将减少4500万美元,降低到7500万美元。 考虑到停用和虚拟化因素,服务器运行时的平均容量利用率将由目前的5.6%升至9.1%。 该公司仍然能够满足自身日益增长的数据需求,但是电力需求的减少,意味着未来4年内的二氧化碳排放将由59.1万吨削减至34.1万吨。 公司还可以通过对不断上升的数据需求加强管理来实现节约。 对于应当保留多少数据,是否要缩减某些数据密集型分析的规模,业务部门应当审查相关的政策。 一些交易的计算可以推迟,以降低服务器在高峰时段的利用率,也并不是所有企业信息都需要基于广泛备份的灾难恢复功能。 更好的预测和规划是提高数据中心效率的基础。 公司应当跟踪自己对数据需求的预测与实际需求之间的差异,然后向能够最大限度减少预测偏差的业务部门提供奖励。 数据中心的管理人员应尽可能全面了解未来的趋势,例如机构增长和业务周期等,然后将这一趋势与自身采用的模型结合起来。 由数据中心、应用架构师和设施操作人员提供的建议可以用于改善这些模型。 一家全球通信公司制定了一套规划流程,将每个业务部门数据增长量的各种发展情况包括在内。 虽然公司最终得出的结论是,它需要扩大容量,但是未来需求中有很大一部分可通过现有资产来满足,这比原计划节约了35%的资本支出。 许多机构并没有将数据中心看作一种稀缺的昂贵资源,而是将其当成了等待注水的水桶。 为了避免这种趋势,公司在估算新服务器或附加应用程序和数据的成本时,可以采用实际拥有成本(TCO)核算法。 业务部门、软件开发人员或IT管理人员在进行支出决策时,很少会将应用程序和服务器的生命周期运行成本考虑在内。 提早计算这些成本,有助于限制过量的需求。 管理这些变化可能十分困难。 大型机构中的许多人并没有意识到数据的成本。 企业的每一个部门都会产生对于数据中心服务的需求。 满足这些需求的责任分散在IT部门(包括运营和应用开发)、设施规划人员、共享服务团队和企业不动产职能部门身上。 成本报告工作并没有统一的标准。 第4页:提高总体效率提高总体效率作为数据中心改进计划的一部分,我们建议采用一项新的指标:企业数据中心平均效率(cadE)。 与美国的企业燃料平均经济性(CAFE)里程标准类似,CADE考虑了数据中心内的设施能效、设施利用率和服务器利用率水平。 将这些因素综合起来,就得到了数据中心的总体效率,即CADE(图)。 减少了成本和碳排放的公司将提高自身数据中心的CADE分数。 这就像在汽车行业中,出色的里程数能够提高CAFE评级一样。 为了给改进工作设立目标,我们将CADE分为五级。 属于CADE第1级的数据中心运营效率最低;大多数机构最初可能都会被归入较低的级别。 关闭利用率低下的服务器、采用虚拟化技术以及提高设施空间的使用效率,都将提高CADE分数。 借助CADE,公司还可以对整个数据中心的设施进行基准比较分析,或者与竞争对手进行比较,也可以为管理人员设立绩效目标并加以跟踪。 在数据中心的需求管理方面,我们建议采用一种由首席信息官全权负责的新治理模型。 在这种体制下,首席信息官能够更为透彻地了解各业务部门的数据需求;对于需要更多服务器或软件应用的新数据项目,他们可以强制要求将能耗和设施成本考虑到相应的投资回报计算中。 我们还建议首席信息官采用一种新的指标来衡量改进情况,请参见副文“提高数据中心的效率”。 通过强化责任,首席信息官将拥有更高的积极性来寻求改进,例如采用虚拟化技术和提高现有设施的利用率。 由于这种模型将关键业务决策的更多责任集中在首席信息官身上,因此不但需要首席执行官的全力支持,而且要求机构转变以往对于业务部门的数据中心扩容请求有求必应的思维模式。 此外,首席信息官还应当设定将数据中心的能效提高
新一代数据中心 在设备问题上一定会更加重视节能因素。
本文地址:http://www.hyyidc.com/article/212163.html