好有缘导航网

数据中心评估指标的终极指南:如何优化性能和效率 (数据中心评估 fair)


文章编号:16580 / 分类:互联网资讯 / 更新时间:2024-06-20 04:20:17 / 浏览:

在当今数字时代,数据中心已成为企业和组织至关重要的基础设施。它们存储、处理和管理着大量的数据,为各种应用和服务提供支持。为了确保数据中心高效可靠地运行,至关重要的是评估和监测其性能和效率。本文将提供数据中心评估指标的完整指南,帮助您优化数据中心的性能和效率。

评估数据中心的指标

数据中心评估指标涵盖各种方面,包括:

硬件指标

数据中心评估指标的终极指南如何优化和效
  • 服务器利用率:测量服务器处理请求的时间百分比。
  • 存储利用率:测量存储系统存储数据的容量百分比。
  • 网络利用率:测量网络带宽用于传输数据的百分比。
  • 电能消耗:测量数据中心消耗的电力量。

软件指标

    c/tr>合规性

    结论

    数据中心评估指标对于优化数据中心的性能和效率至关重要。通过监测和评估这些指标,您可以识别薄弱环节、采取措施改进数据中心的运营并确保其满足不断变化的业务需求。通过实施本文所讨论的优化策略,您可以提高数据中心的可用性、可靠性和成本效益。定期评估和优化将确保您的数据中心成为可靠的基础设施,支持您的业务成功。

现代数据中心六大优化趋势

现代数据中心六大优化趋势 能源成本仍然是数据中心增长最快的费用,据说超过了计算设备本身的成本。 电力使用效率(PUE)和碳使用效率(CUE)是国际公认的指标,与更多其他的定义指标一道,将成为行业标准。 新的数据中心的建设和改造,必须同时应对业务和绿色环保的双重需求。 随着数据中心的成本不断飙升,数据中心管理的重点开始转向优化数据中心基础设施。 在未来几年,如下的一些新的趋势必将影响未来数据中心的决策: (一)数据中心的远程监控关于企业数据中心是否采用外包的争论仍在继续。 企业已决定继续在内部运行IT,并找到了成本有效的使用外部数据中心监控的供应商。 在某些情况下,物理基础设施设备,外部监测和第一级的支持,需要安全访问权限。 需要更多的基础设施防火墙和安全措施,这将增加数据中心的复杂性。 另一方面,由于工作人员工资和工作空间是连续的支出。 此外,一个团队规模的缩放在外部环境规模更容易。 (二)数据中心的选址一家数据中心的选址问题是一个相当重要的决定。 因为现在的技术进步已经使得大多数任务可以进行远程操作,现场只需要有少量的工作人员需要即可,这就为数据中心的选址提供了广泛的地域选择。 对这一决定有着相当影响的一些因素是:选址地区的气候特点每千瓦小时的最低费用对环境的最小危害降低生产成本选址地区较低的人口稠密度低建设成本低劳动力成本“自然冷却”的可行性:使用室外空气用于冷却数据中心,从而需要减少机械制冷。 (三)绿色IT能源消耗直接影响冷却费用,毕竟散热主要来自设备。 战略业务计划将直接影响到安装在数据中心的IT设备的类型和数量。 了解数据中心的设备的类型和工作效率的相关知识是非常重要的,因为这会影响数据中心电源和冷却战略,以及数据中心的物理设计战略。 使IT更具效率和成本效益,继续成为业界关注的焦点,无论是对于制造商还是消费者。 [page] (四)可扩展性和模块化在过去几年中,只有硬件和软件的可扩展性和模块化架构,以满足日益增长的需求。 鉴于对基础设施的成本和需求的压力,现在有必要对数据中心基础设施实施可扩展性和模块化设计方法。 这样的做法,例如,适用于UPS和配电系统,将使数据中心添加/禁用某一部分,不会影响另一家数据中心。 灵活的设计使托管服务提供商可以根据客户的要求添加和删除数据中心的某些部分。 为了迎合顾客的不同负载和任务的需求,也需要一个灵活的设计。 (五)灾难恢复优化和可用性从历史上看,硬件的利用率很低,虚拟化还有很长的路要走。 然而,人们关注的重点一直聚焦在如何提高生产数据中心的效率,却并未考虑灾难恢复(DR)/备份中心的问题。 因为其一直处于“关闭”或“闲置”。 现在,企业已经意识到开始对这些“闲置”的设备进行重要的投资。 并采用创新的方法,将其用于灾难恢复(DR)的基础设施。 使用灾难恢复中心作为测试、培训的趋势正在持续增长。 设计需要考虑到切换的能力,以最安全,最快捷的手段来生产。 (六)数据中心基础设施管理IT和数据中心设施管理的融合是一个现实。 大多数基础设施设备是按照IP寻址,就像IT设备已经实施了多年一样。 开发阶段的几家公司要将两种不同的环境融合在一起。 按照情景规划的IT组件和物理基础设施元素的能力,将使设计师知道计划和变化的IT环境如何影响物理环境,反之亦然。 例如,如果我们安装了特定类型的IT硬件,将对UPS和冷却系统的负载产生何种影响?避免成本不超过工程费用将实现这些产品顺利打入市场。 至关重要的是,这些因素必须在数据中心策略和设计的早期阶段充分考虑到,毕竟这些功能将对IT预算产生非常重要的影响,如果没有计划好,可能会对数据中心的计算能力和运营成本产生不利影响。 罗恩蒂尔森是Infosys信息技术有限公司可持续发展实践的首席顾问。 拥有30多年的IT从业经验,其中26年是数据中心行业相关。 对于本文亦有贡献,他曾在新的数据中心建设和现有网站的建设部署过程中担任过各项职责,致力于物理和IT基础设施的工作。 本文作者维伯哈夫巴蒂亚是Infosys信息技术有限公司和数据中心认证协会可持续发展实践的高级顾问。 拥有9年的IT从业经验,成功管理着一家数据中心,并在多个数据中心的优化和绿色IT倡议组织工作。

联合智业“数据中心服务能力成熟度评估“是什么?

目前,各行各业的互联网用户、移动互联用户正在激增,用户的需求也在从简单信息获取、信息交流向商业化色彩演变,数据中心后台的并发交易量及交易数据都呈现爆炸式增长趋势,数据中心承载着巨大压力,为业务的安全运营带来巨大挑战。

《信息技术服务 数据中心服务能力成熟度模型》GB/T-2016构建了包含战略发展、运营保障和组织治理3个能力域、11个能力子域和33个能力项在内的完整的能力框架和管理要求,提出了由人员、过程、技术、资源、政策、领导、文化7个能力要素转换为13个指标的评价方法,是指导数据中心管理建设、衡量数据中心管理水平的模型。

数据中心服务能力成熟度划分为一级、二级、三级、四级、五级共五个级别,自低向高依次为起始级、发展级、稳健级、优秀级和卓越级,每个成熟度级别表明数据中心服务能力所达到的水平。

适用范围

适用于对各类数据中心运营管理组织所开展的符合性评估活动。

北京联合智业认证有限公司是经认监委认证规则备案的数据中心服务能力成熟度符合性评估机构,可在全国范围内进行数据中心服务能力成熟度一到五级符合性评估工作。

数据中心服务能力的改进和提升通过渐进的方式来实现,以逐步提升和改进数据中心服务能力。

对于企业的好处

机房pue值是什么意思

该意思是评价数据中心能源效率的指标。 PUE是评价数据中心能源效率的重要指标,数值越接近1,表明数据中心的能效水平越好,该指标通过计算数据中心的总能耗与IT设备能耗的比值,来评估数据中心在能源利用方面的效率。 为了降低PUE值,需要采取一系列措施,如优化IT设备的设计和配置、提高数据中心的冷却效率、采用高效的供电设备等,此外,合理规划数据中心的布局和结构,减少不必要的能源消耗,也可以帮助降低PUE值。 总之,PUE值是衡量数据中心能源效率的关键指标,通过降低PUE值,可以提高数据中心的能效水平,减少对环境的影响,同时也能够降低运营成本,为企业和社会带来更多的经济效益。

数据中心要如何实现节能减排增加能效

我们的研究表明,通过更加严格的管理,公司可以将数据中心的能效提高一倍,从而降低成本并减少温室气体的排放。 具体而言,公司需要更积极地管理技术资产,提高现有服务器的利用率水平;公司还需要更准确地预测业务需求对应用程序、服务器和数据中心设施容量的推动效应,以便控制不必要的资本和运营支出。 数据中心的效率是一个战略问题。 企业建造和运营数据中心花费的资金在公司IT预算中占的比例不断上升,导致用于急需技术项目的预算越来越少。 数据中心建造计划是董事会一级的决策。 同时,监管部门和外部利益相关方也越来越关注公司管理自身碳足迹的方式。 采用最佳实践不仅有助于公司减少污染,还能够提高它们作为良好企业公民的形象。 IT成本高昂如今,公司进行的分析越来越复杂,客户要求实时访问账户,广大员工也在寻找新的技术密集型协作方法。 因此,即使在经济放缓时,人们对于计算、存储和网络容量的需求也在继续增长。 为了应对这一趋势,IT部门正不断增加计算资源。 在美国,数据中心的服务器数量正在以每年约10%的速度增加。 与此同时,在中国和印度等新兴市场,机构正在变得越来越复杂,更多的运营工作实现了自动化,同时有越来越多的外包数据业务在这里进行,因此数据中心的数量呈现出更快的增长态势。 这种对计算资源无法抑制的需求,导致全球数据中心容量稳步上升。 目前,这种增长并没有显露出即将结束的迹象,通常在经济衰退时期它只会进入温和增长状态。 这一增长已经导致了IT成本激增。 如果将设施、存储设备、服务器和人员成本都计算在内,数据中心支出一般会占到企业IT总预算的25%。 随着服务器数量不断增长,电价也正以高于收入和其他IT成本的速度攀升,上述比例只会日益提高。 每年,运行这些设施的成本都在以高达20%的速度上升,而IT总支出的增长速度仅为6%,二者相差极为悬殊。 数据中心支出的不断增加,改变了许多企业的经济结构,尤其是金融、信息服务、媒体和电信公司等信息密集型企业。 在过去5年中,成立一个大型企业数据中心所需的投资已经从1.5亿美元升至5亿美元。 在IT密集型企业中,最大设施的造价正逼近10亿美元。 这一支出挤占了新产品开发的资本,降低了某些数据密集型产品的经济效益,并降低了利润。 此外,不断上升的能耗产生了更多、范围更广的碳足迹,导致了环境恶化。 对于大多数服务行业,数据中心是企业最主要的温室气体排放来源。 在2000到2006年间,用于存储和处理数据的电力翻倍,每个数据设施的平均耗电量相当于2.5万个家庭的总和。 世界上共有4400万台服务器,消耗了总电力的0.5%。 如今,数据中心的碳排放已经接近阿根廷和荷兰等国家的碳排放水平。 仅仅在美国,到2010年数据中心的预计用电增长量就相当于要新建10座电厂的发电量。 目前的预测显示,如果不对需求加以遏制,2020年全球数据中心的碳排放将是现在的4倍。 监管部门已经注意到这些发展趋势,正在督促公司拿出解决方案。 美国环保署(EPA)建议,作为建立运营效率标准的第一步,大型数据中心应当使用能量计。 同时,欧盟也发布了一套自愿执行的行为准则,其中介绍了以较高的能效运行数据中心的最佳实践。 随着数据中心排放量的持续上升,政府可能会为了减排而施加更大的压力。 第2页:全面应对挑战全面应对挑战在信息密集型机构中,许多部门和级别的人员都可以做出影响数据中心运营效率的决策。 金融交易员可以选择运行复杂的蒙特卡洛(MonteCarlo)分析,而药物研究人员可以决定要将多少临床实验影像数据存储起来。 负责应用程序开发的管理人员可以决定用多少编程工作来满足这些需要。 服务器基础设施的管理人员可以做出设备采购决策。 设施主管则可以决定数据中心的位置、电力供应,以及在预测的需求出现前安装设备的时间表。 上述决策通常是在孤立状态下做出的。 销售经理可能会选择将交易由隔夜结算改为即时结算,金融分析师则可能希望为历史数据存储几份副本,他们完全没有考虑到这样做会对数据中心的成本造成什么影响。 应用程序开发人员很少想到要对自身的工作进行优化,以将服务器用量降到最低,也很少考虑开发能够跨服务器共享的设计应用程序。 购买服务器的管理人员可能会选择价格最低或他们最熟悉的产品。 但是这些服务器也许会浪费数据中心的电力或空间。 很多时候,管理人员会超额购买设备,以保证在最极端的使用情况下拥有足够的容量,而这会造成容量过剩。 管理人员往往会建造有多余空间和高制冷容量的设施,以满足极端情况下的需求或应对紧急扩建。 这些决策在整个机构中累加起来,将对成本和环境造成重大影响。 在许多情况下,公司可以在不降低自身数据管理能力的前提下,停用现有的部分服务器,并搁置购买新服务器的计划。 这可以借助一些众所周知的技术来实现。 比如虚拟化,这种技术实际上是通过寻找服务器的空闲部分来运行应用程序,以达到容量共享的目的。 但是公司不一定会这样做,因为没有哪位高管能够承担“端对端”的责任。 在机构内部,管理人员会以最符合自身利益的方式行事,这就造成大多数数据中心效率低下,每台服务器上常常只运行了一个软件应用程序。 我们分析了一家媒体公司的近500台服务器,其中利用率低于3%的占三分之一,而低于10%的则占三分之二。 虽然有诸多用于跟踪使用情况的现成管理工具,但这家公司没有使用其中任何一种。 从全球来看,我们估计服务器的日常利用率一般最高只有5%到10%而已,这造成了能源和资金的浪费。 对此,数据中心管理人员一般会回答,配备这些服务器是为了在极端情况下提供容量,例如应付圣诞节前一天的购物潮。 但一般来说,这一论断并不成立,因为数据显示:如果平均利用率极低,那么高峰时段的利用率也会很低。 此外,数据设施的数量不断攀升,但所存放的服务器和相关设备有时仅占数据设施容量的一半,这说明有上亿美元的资本支出被浪费了。 即使公司报告认为数据中心已经满载,但沿着数据中心的过道行走,经常会发现服务器机架上有很多空位,原先放在这些空位中的设备都已经淘汰。 之所以出现这种不一致的现象,部分原因在于预测数据中心需求的难度很高。 运营的时间框架是一个问题。 数据中心的设计和建造一般需要2年或更长时间,而预计的使用寿命至少为12年,因此容量是在业务部门产生实际需求之前就已经设定的。 与此同时,对于业务决策如何互相影响,如何转化为对新应用程序的需求,以及需要多少服务器容量才能满足需求,还存在着认识不够全面的现象。 例如,如果客户需求增长50%,许多公司很难预测出服务器和数据中心的容量是需要增加25%,还是增加100%。 在极端情况下,我们发现一些设施在投入运营后常年处于半空状态;而另一些公司在建成一个数据中心之后,很快就发觉需要再建一个新的。 如今数据中心已经成为一项昂贵的资产,由此可以推断,财务绩效责任落实得十分糟糕。 设施的财务和管理责任往往会落在不动产管理人员身上,而这些人基本不具备相关的专业技术知识,对于IT与核心业务问题的联系也缺乏深入的认识。 同时,管理服务器运营的人员很少去了解关键运营支出的数据,例如耗电量或IT设备所占不动产的实际成本。 相反,当IT管理人员决定购置更多的应用程序或新的服务器时,有时只会使用硬件初始成本和软件许可证费用等基本指标。 计算实际成本时,需要考虑设施运营和租赁、电力使用、支持以及折旧等因素。 这些费用可能是服务器初始购置成本的4到5倍。 加上前面说到的孤立决策和责任问题,数据中心通常会添加额外的服务器作为保险措施,而很少讨论成本权衡或业务需求。 在缺乏实际成本分析的情况下,过度建造、过度设计和效率低下就成了普遍现象。 第3页:改革运营方式改革运营方式在研究之初,我们以为通过建造新的节能型数据中心,可为降低数据中心的成本和碳排放指出一条光明大道。 新的设施可以发挥当前各种技术的优势,利用自然冷却方法和碳排放较低的电源。 但我们还了解到,在降低成本和碳排放方面成效最显著的方法是改善公司现有数据中心效率低下的状况。 通过改善资产管理,增强管理层的责任意识,并且为降低能源成本和碳排放设立清晰的目标,大多数公司都能够在2012年之前将IT能效提高一倍,并遏制其数据中心温室气体排放的增长。 实际上,您无需另行建造就能获得最环保的数据中心。 积极管理资产一家大型公司采用的做法表明,规范现有服务器和设施的使用就可能产生巨大的收益。 这家公司原本的计划是,增加服务器的数量,并建造一个新的数据中心来容纳这些服务器和其他IT设备,以便满足自身在2010年的信息需求。 该公司的董事会已经批准了这项计划,但这意味着企业在这一年会有大量的资本支出。 于是,这家公司彻底修改了计划。 它将关闭5000多台很少使用的服务器。 通过对占公司应用程序总量15%的3700个应用程序进行虚拟化,可以将现役服务器的数量由2.5万台减少至2万台。 公司还更换了一些较为陈旧的服务器,代之以能够将用电效率提高20%的产品。 这些调整使公司得以搁置原先的数据中心扩建计划,并因此节省了3.05亿美元的资本投资成本。 由于服务器数量和耗电量的下降,运营支出预计将减少4500万美元,降低到7500万美元。 考虑到停用和虚拟化因素,服务器运行时的平均容量利用率将由目前的5.6%升至9.1%。 该公司仍然能够满足自身日益增长的数据需求,但是电力需求的减少,意味着未来4年内的二氧化碳排放将由59.1万吨削减至34.1万吨。 公司还可以通过对不断上升的数据需求加强管理来实现节约。 对于应当保留多少数据,是否要缩减某些数据密集型分析的规模,业务部门应当审查相关的政策。 一些交易的计算可以推迟,以降低服务器在高峰时段的利用率,也并不是所有企业信息都需要基于广泛备份的灾难恢复功能。 更好的预测和规划是提高数据中心效率的基础。 公司应当跟踪自己对数据需求的预测与实际需求之间的差异,然后向能够最大限度减少预测偏差的业务部门提供奖励。 数据中心的管理人员应尽可能全面了解未来的趋势,例如机构增长和业务周期等,然后将这一趋势与自身采用的模型结合起来。 由数据中心、应用架构师和设施操作人员提供的建议可以用于改善这些模型。 一家全球通信公司制定了一套规划流程,将每个业务部门数据增长量的各种发展情况包括在内。 虽然公司最终得出的结论是,它需要扩大容量,但是未来需求中有很大一部分可通过现有资产来满足,这比原计划节约了35%的资本支出。 许多机构并没有将数据中心看作一种稀缺的昂贵资源,而是将其当成了等待注水的水桶。 为了避免这种趋势,公司在估算新服务器或附加应用程序和数据的成本时,可以采用实际拥有成本(TCO)核算法。 业务部门、软件开发人员或IT管理人员在进行支出决策时,很少会将应用程序和服务器的生命周期运行成本考虑在内。 提早计算这些成本,有助于限制过量的需求。 管理这些变化可能十分困难。 大型机构中的许多人并没有意识到数据的成本。 企业的每一个部门都会产生对于数据中心服务的需求。 满足这些需求的责任分散在IT部门(包括运营和应用开发)、设施规划人员、共享服务团队和企业不动产职能部门身上。 成本报告工作并没有统一的标准。 第4页:提高总体效率提高总体效率作为数据中心改进计划的一部分,我们建议采用一项新的指标:企业数据中心平均效率(CADE)。 与美国的企业燃料平均经济性(CAFE)里程标准类似,CADE考虑了数据中心内的设施能效、设施利用率和服务器利用率水平。 将这些因素综合起来,就得到了数据中心的总体效率,即CADE(图)。 减少了成本和碳排放的公司将提高自身数据中心的CADE分数。 这就像在汽车行业中,出色的里程数能够提高CAFE评级一样。 为了给改进工作设立目标,我们将CADE分为五级。 属于CADE第1级的数据中心运营效率最低;大多数机构最初可能都会被归入较低的级别。 关闭利用率低下的服务器、采用虚拟化技术以及提高设施空间的使用效率,都将提高CADE分数。 借助CADE,公司还可以对整个数据中心的设施进行基准比较分析,或者与竞争对手进行比较,也可以为管理人员设立绩效目标并加以跟踪。 在数据中心的需求管理方面,我们建议采用一种由首席信息官全权负责的新治理模型。 在这种体制下,首席信息官能够更为透彻地了解各业务部门的数据需求;对于需要更多服务器或软件应用的新数据项目,他们可以强制要求将能耗和设施成本考虑到相应的投资回报计算中。 我们还建议首席信息官采用一种新的指标来衡量改进情况,请参见副文“提高数据中心的效率”。 通过强化责任,首席信息官将拥有更高的积极性来寻求改进,例如采用虚拟化技术和提高现有设施的利用率。 由于这种模型将关键业务决策的更多责任集中在首席信息官身上,因此不但需要首席执行官的全力支持,而且要求机构转变以往对于业务部门的数据中心扩容请求有求必应的思维模式。 此外,首席信息官还应当设定将数据中心的能效提高

数据中心电能使用EEUE分析

世界能源委员会1995年对能源效率的定义为:减少提供同等能源服务的能源投入。 对于能耗居高不下的数据中心,研究提高能源效率具有深远的社会效益和经济效益。 除了能源效率之外,数据中心还有多项其他性能指标,按照国际标准组织ISO的定义统称为关键性能指标,或称为关键绩效指标,研究这些指标对于数据中心同样具有十分重要的意义。 在已经颁布的数据中心性能指标中最常见的是电能使用效率PUE。 在我国,PUE不但是数据中心研究、设计、设备制造、建设和运维人员最为熟悉的数据中心能源效率指标,也是政府评价数据中心工程性能的主要指标。 除了PUE之外,2007年以后还出台了多项性能指标,虽然知名度远不及PUE,但是在评定数据中心的性能方面也有一定的参考价值,值得关注和研究。 PUE在国际上一直是众说纷纭、莫衷一是的一项指标,2015年ASHRAE公开宣布,ASHRAE标准今后不再采用PUE这一指标,并于2016年下半年颁布了ASHRAE 90.4标准,提出了新的能源效率;绿色网格组织(TGG)也相继推出了新的能源性能指标。 对PUE和数据中心性能指标的讨论一直是国际数据中心界的热门议题。 鉴于性能指标对于数据中心的重要性、国内与国际在这方面存在的差距,以及在采用PUE指标过程中存在的问题,有必要对数据中心的各项性能指标,尤其是对PUE进行深入地研究和讨论。 1.性能指标 ISO给出的关键性能指标的定义为:表示资源使用效率值或是给定系统的效率。 数据中心的性能指标从2007年开始受到了世界各国的高度重视,相继推出了数十个性能指标。 2015年之后,数据中心性能指标出现了较大变化,一系列新的性能指标相继被推出,再度引发了国际数据中心界对数据中心的性能指标,尤其是对能源效率的关注,并展开了广泛的讨论。 2.PUE 2.1PUE和衍生效率的定义和计算方法 2.1.1电能使用效率PUE TGG和ASHRAE给出的PUE的定义相同:数据中心总能耗Et与IT设备能耗之比。 GB/T.3—2016给出的EEUE的定义为:数据中心总电能消耗与信息设备电能消耗之间的比值。 其定义与PUE相同,不同的是把国际上通用的PUE(powerusage effectiveness)改成了EEUE(electricenergy usage effectiveness)。 国内IT界和暖通空调界不少专业人士对于这一变更提出了不同的看法,根据Malone等人最初对PUE的定义,Et应为市电公用电表所测量的设备总功率,这里的Et就是通常所说的数据中心总的设备耗电量,与GB/T.3—2016所规定的Et应为采用电能计量仪表测量的数据中心总电能消耗的说法相同。 笔者曾向ASHRAE有关权威人士咨询过,他们认为如果要将“power”用“electricenergy”来替代,则采用“electricenergy consumption”(耗电量)更准确。 显然这一变更不利于国际交流。 虽然这只是一个英文缩写词的变更,但因为涉及到专业术语,值得商榷。 ISO给出的PUE的定义略有不同:计算、测量和评估在同一时期数据中心总能耗与IT设备能耗之比。 2.1.2部分电能使用效率pPUE TGG和ASHRAE给出的pPUE的定义相同:某区间内数据中心总能耗与该区间内IT设备能耗之比。 区间(zone)或范围( boundary)可以是实体,如集装箱、房间、模块或建筑物,也可以是逻辑上的边界,如设备,或对数据中心有意义的边界。 ISO给出的pPUE的定义有所不同:某子系统内数据中心总能耗与IT设备总能耗之比。 这里的“子系统”是指数据中心中某一部分耗能的基础设施组件,而且其能源效率是需要统计的,目前数据中心中典型的子系统是配电系统、网络设备和供冷系统。 2.1.3设计电能使用效率dPUE ASHRAE之所以在其标准中去除了PUE指标,其中一个主要原因是ASHRAE认为PUE不适合在数据中心设计阶段使用。 为此ISO给出了设计电能使用效率dPUE,其定义为:由数据中心设计目标确定的预期PUE。 数据中心的能源效率可以根据以下条件在设计阶段加以预测:1)用户增长情况和期望值;2)能耗增加或减少的时间表。 dPUE表示由设计人员定义的以最佳运行模式为基础的能耗目标,应考虑到由于数据中心所处地理位置不同而导致的气象参数(室外干球温度和湿度)的变化。 2.1.4期间电能使用效率iPUE ISO给出的期间电能使用效率iPUE的定义为:在指定时间测得的PUE,非全年值。 2.1.5电能使用效率实测值EEUE-R GB/T.3—2016给出的EEUE-R的定义为:根据数据中心各组成部分电能消耗测量值直接得出的数据中心电能使用效率。 使用EEUE-R时应采用EEUE-Ra方式标明,其中a用以表明EEUE-R的覆盖时间周期,可以是年、月、周。 2.1.6电能使用效率修正值EEUE-X GB/T.3—2016给出的EEUE-X的定义为:考虑采用的制冷技术、负荷使用率、数据中心等级、所处地域气候环境不同产生的差异,而用于调整电能使用率实测值以补偿其系统差异的数值。 2.1.7采用不同能源的PUE计算方法 数据中心通常采用的能源为电力,当采用其他能源时,计算PUE时需要采用能源转换系数加以修正。 不同能源的转换系数修正是评估数据中心的一次能源使用量或燃料消耗量的一种方法,其目的是确保数据中心购买的不同形式的能源(如电、天然气、冷水)可以进行公平地比较。 例如,如果一个数据中心购买当地公用事业公司提供的冷水,而另一个数据中心采用由电力生产的冷水,这就需要有一个系数能使得所使用的能源在相同的单位下进行比较,这个系数被称为能源转换系数,它是一个用来反映数据中心总的燃料消耗的系数。 当数据中心除采用市电外,还使用一部分其他能源时,就需要对这种能源进行修正。 2.1.8PUE和EEUE计算方法的比较 如果仅从定义来看,PUE和EEUE的计算方法十分简单,且完全相同。 但是当考虑到计算条件的不同,需要对电能使用效率进行修正时,2种效率的计算方法则有所不同。 1)PUE已考虑到使用不同能源时的影响,并给出了修正值和计算方法;GB/T.3—2016未包括可再生能源利用率,按照计划这一部分将在GB/T.4《可再生能源利用率》中说明。 2)PUE还有若干衍生能源效率指标可供参考,其中ISO提出的dPUE弥补了传统PUE的不足;EEUE则有类似于iPUE的指标EEUE-Ra。 3)EEUE分级(见表1)与PUE分级(见表2)不同。 4)EEUE同时考虑了安全等级、所处气候环境、空调制冷形式和IT设备负荷使用率的影响。 ASHRAE最初给出了19个气候区的PUE最大限值,由于PUE已从ASHRAE标准中去除,所以目前的PUE未考虑气候的影响;ISO在计算dPUE时,要求考虑气候的影响,但是如何考虑未加说明;PUE也未考虑空调制冷形式和负荷使用率的影响,其中IT设备负荷率的影响较大,应加以考虑。 2.2.PUE和EEUE的测量位置和测量方法 2.2.1PUE的测量位置和测量方法 根据IT设备测点位置的不同,PUE被分成3个类别,即PUE1初级(提供能源性能数据的基本评价)、PUE2中级(提供能源性能数据的中级评价)、PUE3高级(提供能源性能数据的高级评价)。 PUE1初级:在UPS设备输出端测量IT负载,可以通过UPS前面板、UPS输出的电能表以及公共UPS输出总线的单一电表(对于多个UPS模块而言)读取。 在数据中心供电、散热、调节温度的电气和制冷设备的供电电网入口处测量进入数据中心的总能量。 基本监控要求每月至少采集一次电能数据,测量过程中通常需要一些人工参与。 PUE2中级:通常在数据中心配电单元前面板或配电单元变压器二次侧的电能表读取,也可以进行单独的支路测量。 从数据中心的电网入口处测量总能量,按照中等标准的检测要求进行能耗测量,要求每天至少采集一次电能数据。 与初级相比,人工参与较少,以电子形式采集数据为主,可以实时记录数据,预判未来的趋势走向。 PUE3高级:通过监控带电能表的机架配电单元(即机架式电源插座)或IT设备,测量数据中心每台IT设备的负载(应该扣除非IT负载)。 在数据中心供电的电网入口处测量总能量,按照高标准的检测要求进行能耗测量,要求至少每隔15min采集一次电能数据。 在采集和记录数据时不应该有人工参与,通过自动化系统实时采集数据,并支持数据的广泛存储和趋势分析。 所面临的挑战是以简单的方式采集数据,满足各种要求,最终获取数据中心的各种能量数据。 对于初级和中级测量流程,建议在一天的相同时间段测量,数据中心的负载尽量与上次测量时保持一致,进行每周对比时,测量时间应保持不变(例如每周周三)。 2.2.2EEUE的测量位置和测量方法 1)Et测量位置在变压器低压侧,即A点; 2)当PDU无隔离变压器时,EIT测量位置在UPS输出端,即B点; 3)当PDU带隔离变压器时,EIT测量位置在PDU输出端,即C点; 4)大型数据中心宜对各主要系统的耗电量分别计量,即E1,E2,E3点; 5)柴油发电机馈电回路的电能应计入Et,即A1点; 6)当采用机柜风扇辅助降温时,EIT测量位置应为IT负载供电回路,即D点; 7)当EIT测量位置为UPS输出端供电回路,且UPS负载还包括UPS供电制冷、泵时,制冷、泵的能耗应从EIT中扣除,即扣除B1和B2点测得的电量。 2.2.3PUE和EEUE的测量位置和测量方法的差异 1)PUE的Et测量位置在电网输入端、变电站之前。 而GB/T.3—2016规定EEUE的Et测量位置在变压器低压侧。 数据中心的建设有2种模式:①数据中心建筑单独设置,变电站自用,大型和超大型数据中心一般采用这种模式;②数据中心置于建筑物的某一部分,变电站共用,一般为小型或中型数据中心。 由于供电局的收费都包括了变压器的损失,所以为了准确计算EEUE,对于前一种模式,Et测量位置应该在变压器的高压侧。 2)按照2.2.2节第6条,在计算EIT时,应减去机柜风机的能耗。 应该指出的是,机柜风机不是辅助降温设备,起到降温作用的是来自空调设备的冷空气,降温的设备为空调换热器,机柜风机只是起到辅助传输冷风的作用,因此机柜风机不应作为辅助降温设备而计算其能耗。 在GB/T.3征求意见时就有人提出:机柜风机的能耗很难测量,所以在实际工程中,计算PUE时,EIT均不会减去机柜风机的能耗。 在美国,计算PUE时,机柜风机的能耗包括在EIT中。 3)PUE的测点明显多于GB/T.3—2016规定的EEUE的测点。 2.3.PUE存在的问题 1)最近两年国内外对以往所宣传的PUE水平进行了澄清。 我国PUE的真实水平也缺乏权威调查结果。 GB/T.3—2016根据国内实际状况,将一级节能型数据中心的EEUE放宽到1.0~1.6,其上限已经超过了国家有关部委提出的绿色数据中心PUE应低于1.5的要求,而二级比较节能型数据中心的EEUE规定为1.6~1.8,应该说这样的规定比较符合国情。 2)数据中心总能耗Et的测量位置直接影响到PUE的大小,因此应根据数据中心建筑物市电变压器所承担的荷载组成来决定其测量位置。 3)应考虑不同负荷率的影响。 当负荷率低于30%时,不间断电源UPS的效率会急剧下降,PUE值相应上升。 对于租赁式数据中心,由于用户的进入很难一步到位,所以数据中心开始运行后,在最初的一段时间内负荷率会较低,如果采用设计PUE,也就是满负荷时的PUE来评价或验收数据中心是不合理的。 4)数据中心的PUE低并非说明其碳排放也低。 完全采用市电的数据中心与部分采用可再生能源(太阳能发电、风电等),以及以燃气冷热电三联供系统作为能源的数据中心相比,显然碳排放指标更高。 数据中心的碳排放问题已经引起国际上广泛地关注,碳使用效率CUE已经成为数据中心重要的关键性能指标,国内对此的关注度还有待加强。 5)GB/T.3—2016规定,在计算EIT时,应减去机柜风机的耗能。 关于机柜风机的能耗是否应属于IT设备的能耗,目前国内外有不同的看法,其中主流观点是服务器风机的能耗应属于IT设备的能耗,其原因有二:一是服务器风机是用户提供的IT设备中的一个组成部分,自然属于IT设备;二是由于目前服务器所采用的风机基本上均为无刷直流电动机驱动的风机(即所谓EC电机),风机的风量和功率随负荷变化而改变,因此很难测量风机的能耗。 由于数据中心风机的设置对PUE的大小影响很大,需要认真分析。 从实际使用和节能的角度出发,有人提出将服务器中的风机取消,而由空调风机取代。 由于大风机的效率明显高于小风机,且初投资也可以减少,因此这种替代方法被认为是一个好主意,不过这是一个值得深入研究的课题。 6)国内相关标准有待进一步完善。 GB/T.3—2016《数据中心资源利用第3部分:电能能效要求和测量方法》的发布,极大地弥补了国内标准在数据中心电能能效方面的不足;同时,GB/T.3—2016标准颁布后,也引起了国内学术界和工程界的热议。 作为一个推荐性的国家标准如何与已经颁布执行的强制性行业标准YD 5193—2014《互联网数据中心(IDC)工程设计规范》相互协调?在标准更新或升级时,包括内容相似的国际标准ISOIEC -2-2016在内的国外相关标准中有哪些内容值得借鉴和参考?标准在升级为强制性国家标准之前相关机构能否组织就其内容进行广泛的学术讨论?都是值得考虑的重要课题。 ASHRAE在发布ASHRAE90.4标准时就说明,数据中心的标准建立在可持续发展的基础上,随着科学技术的高速发展,标准也需要不断更新和创新。 7)PUE的讨论已经相当多,事实上作为大数据中心的投资方和运营方,更关心的还是数据中心的运行费用,尤其是电费和水费。 目前在数据中心关键性能指标中尚缺乏一个经济性指标,使得数据中心,尤其是大型数据中心和超大型数据中心的经济性无法体现。 2.4.PUE的比较 不同数据中心的PUE值不应直接进行比较,但是条件相似的数据中心可以从其他数据中心所提供的测量方法、测试结果,以及数据特性的差异中获益。 为了使PUE比较结果更加公平,应全面考虑数据中心设备的使用时间、地理位置、恢复能力、服务器可用性、基础设施规模等。 3.其他性能指标 3.1.ASHRAE90.4 ASHRAE90.4-2016提出了2个新的能源效率指标,即暖通空调负载系数MLC和供电损失系数ELC。 但这2个指标能否为国际IT界接受,还需待以时日。 3.1.1暖通空调负载系数MLC ASHRAE对MLC的定义为:暖通空调设备(包括制冷、空调、风机、水泵和冷却相关的所有设备)年总耗电量与IT设备年耗电量之比。 3.1.2供电损失系数ELC ASHRAE对ELC的定义为:所有的供电设备(包括UPS、变压器、电源分配单元、布线系统等)的总损失。 3.2.TGG白皮书68号 2016年,TGG在白皮书68号中提出了3个新的能源效率指标,即PUE比(PUEr)、IT设备热一致性(ITTC)和IT设备热容错性(ITTR),统称为绩效指标(PI)。 这些指标与PUE相比,不但定义不容易理解,计算也十分困难,能否被IT界接受,还有待时间的考验。 3.2.1PUE比 TGG对PUEr的定义为:预期的PUE(按TGG的PUE等级选择)与实测PUE之比。 3.2.2IT设备热一致性ITTC TGG对ITTC的定义为:IT设备在ASHRAE推荐的环境参数内运行的比例。 服务器的进风温度一般是按ASHRAE规定的18~27℃设计的,但是企业也可以按照自己设定的服务器进风温度进行设计,在此进风温度下,服务器可以安全运行。 IT设备热一致性表示符合ASHRAE规定的服务器进风温度的IT负荷有多少,以及与总的IT负荷相比所占百分比是多少。 例如一个IT设备总负荷为500kW的数据中心,其中满足ASHRAE规定的服务器进风温度的IT负荷为450kW,则该数据中心的IT设备热一致性为95%。 虽然TGG解释说,IT设备热一致性涉及的只是在正常运行条件下可接受的IT温度,但是IT设备热一致性仍然是一个很难计算的能源效率,因为必须知道:1)服务器进风温度的范围,包括ASHRAE规定的和企业自己规定的进风温度范围;2)测点位置,需要收集整个数据中心服务器各点的进风温度,由人工收集或利用数据中心基础设施管理(DCIM)软件来统计。 3.2.3IT设备热容错性ITTR TGG对ITTR的定义为:当冗余制冷设备停机,或出现故障,或正常维修时,究竟有多少IT设备在ASHRAE允许的或建议的送风温度32℃下送风。 按照TGG的解释,ITTR涉及的只是在出现冷却故障和正常维修运行条件下可接受的IT温度,但是ITTR也是一个很难确定的参数。 ITTR的目的是当冗余冷却设备停机,出现冷却故障或在计划维护活动期间,确定IT设备在允许的入口温度参数下(<32℃)运行的百分比,以便确定数据中心冷却过程中的中断或计划外维护的性能。 这个参数很难手算,因为它涉及到系统操作,被认为是“计划外的”条件,如冷却单元的损失。 3.3.数据中心平均效率CADE 数据中心平均效率CADE是由麦肯锡公司提出,尔后又被正常运行时间协会(UI)采用的一种能源效率。 CADE提出时自认为是一种优于其他数据中心能源效率的指标。 该指标由于被UI所采用,所以直到目前仍然被数量众多的权威著作、文献认为是可以采用的数据中心性能指标之一。 但是笔者发现这一性能指标的定义并不严谨,容易被误解。 另外也难以测量和计算。 该指标的提出者并未说明IT资产效率如何测量,只是建议ITAE的默认值取5%,所以这一指标迄今为止未能得到推广应用。 3.4.IT电能使用效率ITUE和总电能使用效率TUE 2013年,美国多个国家级实验室鉴于PUE的不完善,提出了2个新的能源效率——总电能使用效率TUE和IT电能使用效率ITUE。 提出ITUE和TUE的目的是解决由于计算机技术的发展而使得数据中心计算机配件(指中央处理器、内存、存储器、网络系统,不包括IT设备中的电源、变压器和机柜风机)的能耗减少时,PUE反而增加的矛盾。 但是这2个性能指标也未得到广泛应用。 3.5.单位能源数据中心效率DPPE 单位能源数据中心效率DPPE是日本绿色IT促进协会(GIPC)和美国能源部、环保协会、绿色网格,欧盟、欧共体、英国计算机协会共同提出的一种数据中心性能指标。 GIPC试图将此性能指标提升为国际标准指标。 3.6.水利用效率WUE TGG提出的水利用效率WUE的定义为:数据中心总的用水量与IT设备年耗电量之比。 数据中心的用水包括:冷却塔补水、加湿耗水、机房日常用水。 根据ASHRAE的调查结果,数据中心基本上无需加湿,所以数据中心的用水主要为冷却塔补水。 采用江河水或海水作为自然冷却冷源时,由于只是取冷,未消耗水,可以不予考虑。 民用建筑集中空调系统由于总的冷却水量不大,所以判断集中空调系统的性能时,并无用水量效率之类的指标。 而数据中心由于全年制冷,全年的耗水量居高不下,已经引起了国内外,尤其是水资源贫乏的国家和地区的高度重视。 如何降低数据中心的耗水量,WUE指标是值得深入研究的一个课题。 3.7.碳使用效率CUE TGG提出的碳使用效率CUE的定义为:数据中心总的碳排放量与IT设备年耗电量之比。 CUE虽然形式简单,但是计算数据中心总的碳排放量却很容易出错。 碳排放量应严格按照联合国气象组织颁布的计算方法进行计算统计。

数据中心能耗指标

数据中心能耗指标主要是用于评估数据中心的能源利用效率和节能性能。以下是一些常见的数据中心能耗指标:电能利用效率、碳排放量、能效比、能源回收率、负载率。

1、电能利用效率(PUE):PUE是数据中心能耗评价中最常用的指标,它是用来衡量数据中心能源消耗的效率。PUE值的计算公式为:总设施能耗(千瓦时)/IT设备能耗(千瓦时)。理想的PUE值越低,表示数据中心的能源利用效率越高。

2、碳排放量:碳排放量是指数据中心在运行过程中产生的二氧化碳排放量。较低的碳排放量表明数据中心对环境的影响较小。

3、能效比(CUE):CUE是数据中心制冷系统能耗评价的一个重要指标,它是制冷系统总能耗与IT设备能耗之比。CUE值越低,表示制冷系统的能耗越低,效率越高。

4、能源回收率(ER):能源回收率是指数据中心在制冷、散热等过程中回收再利用能源Total Energy的比率。ER值越高,表示数据中心的能源回收效果越好。

5、负载率:负载率是指数据中心的实际运行负载与设计负载之间的比率。较高的负载率可能导致数据中心能耗较高,而较低的负载率可能意味着数据中心能源利用不充分。

数据中心能耗指标

数据中心能耗指标通常包括以下几种:

1. 平均功率因数:这是衡量数据中心电能利用效率的指标,数值越接近1越好。

2. 总能耗:这是数据中心所有设备在一定时间内消耗的电能总量。

3. 能耗强度:单位IT负载能耗(W/I)或单位负载能耗(W/VA),表示每个单位IT负载或每个负载点的能耗,数值越低越好。

4. 峰值能耗:数据中心在某些设备满负荷或突发高负载情况下产生的最大能耗。

5. 能耗利用率:衡量数据中心设备实际使用能源的效率,通常以百分比表示。数值越高,表示设备能源使用效率越高。

6. 能耗效率:衡量数据中心整体运营效率的指标,通常以电能转化为IT服务的百分比表示。数值越高,表示数据中心的运营效率越高。

此外,一些数据中心还使用其他指标,如PUE(电源使用效率)、绿证评级(针对绿色数据中心)、碳排放量等,这些指标主要用于评估数据中心的能源利用和环保表现。

需要注意的是,数据中心能耗指标因数据中心的规模、设备类型、负载特性等因素而有所不同。因此,在实际应用中,需要根据具体情况选择合适的能耗指标进行评估和优化。

IDC机房有哪些级别评估标准是什么

一、一星级、二星级(得分率须达到90%以上)

评定标准主要包括:机房布局、公共信息符号图形,供电设备、制冷设备、设施设备养护、服务语言、IDC机房硬件设施、光纤、承诺提供24×7(每周24小时x 7天)的网络联接状况监控,24×7的主机运行状态监测,24×7系统管理和技术支持服务,24×7的客服热线,

24×7的恒温恒湿环境,双路高压供电,需要后备柴油发电机,独立UPS 不间断电源保障和紧急状况下第一时间的响应与支持,需要高灵敏度的烟雾探测系统和FM200组成的消防系统等10个方面。

二、三星级(得分率须达到92%以上)

在上述的10个方面外,三星级评定标准还增加了计算机管理系统、管理制度的健全程度,机房设备、IDC设施等其他内容要求,并设置了选择项目73项(综合类别类21项,特色类别一20项,特色类别二16项,特色类别三16项),要求三星级IDC业机房至少需要具备其中10项。

三、四星级(得分率达到95%)

四星级的评定标准在三星级的基础上增加了IDC业机房内外装修、高品质的监控系统两个必备的考核内容,并在其他方面提出了更高的要求,比如73个选择项目中,至少要具备26项。

四、五星级(得分率达到95%)

该星级主要标准与四星级内容基本相同,但各项内容更丰富、规模程度的要求更高,服务项目设置更多,规范也更详尽,比如73个选择项目中,至少要具备33项。

扩展资料

分级依据:

IDC机房星级(等级)分级的依据国内标准《数据中心设计规范》(GB-2017)中主要从机房选址、建筑结构、机房环境、安全管理及对供电电源质量要求等方面对机房分级,可分为A(容错型)、B(冗余型)、C(基本型)三个级别。

在美国标准TIA-942《数据中心的通信基础设施标准》中主要是根据数据中心基础设施的“可用性(Availability)”、“稳定性(Stability)”和“安全性(Security)”分为四个等级:TierI,TierII,TierIII,TierIV。

其中这四个等级可用性的划分是源于美国标准TheUptime Institute,Inc.的《采用分类等级的方式定义场地基础设施性能的工业标准》,在该标准中,美国TheUptimeInstitute依据工程需求与实践,提出了场地基础设施的分类等级的体系框架,

针对数据中心的关键设备期望达到“五个九”即99.999%的系统应用可用性的需求,提出了要与之相匹配的机房场地基础设施(电源配电、暖通空调、以及其他的相关系统)的可用性等级指标。

如何提高数据中心的效率?

(1)优化IT功率由于IT系统最终需要供电,数据中心管理人员需要尝试降低所需IT设备的功率(称为负载有功功率)。 60%的有效负载功率由服务器消耗,因此采取以下行动降低所需的能耗至关重要:•清理工作负载,并消除一切不必要的负载。 •合并虚拟机。 •虚拟化更多的工作负载。 •继续关闭那些供电但不起作用的服务器。 •用较新的服务器替换旧服务器。 (2)优化数据中心空间在服务器虚拟化出现之前所构建的数据中心可能被过度构建,以满足当时的设备需求,因此如今可以进一步减少IT设备所需的空间和更少的IT功率。 在构建新的数据中心时,将数据中心分解为单个模块的模块化设计是值得考虑的,这些模块可以作为更灵活有机的数据中心设计的一部分,并且不断更新升级。 (3)优化数据中心冷却为了实现最低的能耗,数据中心管理人员应确保采用基本的数据中心冷却最佳实践:•安装节能器-节能器在寒冷地区可显著降低PUE。 例如,在北美的大部分地区,40%至90%的冷却可以通过能器节使用从外部进来的空气。 •包含设备和热量-隔离结构可容纳数据中心设备产生的最多热量,将热量从数据中心散发出去,或加热建筑物的其他部分空间。 •优化空调系统-优化空调系统有两种主要方式,一是使用替代的冷却源(例如空气优化器)定期关闭空调系统,二是或者持续改变电源频率,这有助于减少总的能量消耗。 (4)提高数据中心电源和冷却的效率过时的电力输送系统,包括不间断电源(UPS),配电单元(PDU)和变压器,可能对PUE值产生负面影响。 因此,可以评估当前状况,未来需求和现代替代方案。 虽然这需要一定的时间和投资,但通常在PUE值改进方面和节省成本方面会带来良好的回报。 (5)利用DCIM工具可以通过使用数据中心基础设施管理(DCIM)软件实现对能源效率的进一步改进。 DCIM软件在物理IT设备的操作需求和物理设施(建筑物和环境控制)之间提供必要的联系。

如何优化硬件资源被多个虚拟机使用的效率和性能

如何优化硬件资源被多个虚拟机使用的效率和性能?如何优化硬件资源被多个虚拟机使用的效率和性能?随着数据中心的不断发展,企业需要同时运行多个应用程序,这就导致硬件资源的浪费和效率不高。 虚拟化技术可以有效地解决这个问题,它允许一个物理服务器同时运行多个虚拟服务器,从而更高效地利用硬件资源。 但是,在这个过程中,如何优化硬件资源的使用效率和性能,是企业需要面对的重要问题。 下面列出了几个优化多个虚拟机使用硬件资源的方法:1.确定资源需求在虚拟化之前,需要确定每个应用程序所需的资源,如CPU、内存和存储空间等等。 这样可以帮助确定虚拟机的数量,并更好地配置硬件资源。 当需要增加新的虚拟机时,对硬件资源进行合理的分配,避免造成资源浪费和性能下降的问题。 2.调整CPU和内存设置不同的虚拟机使用的CPU和内存需求不同。 为了更好地使用硬件资源,可以逐渐调整每个虚拟机所占用的CPU和内存资源,直到达到最优化的效果。 同时,还可以尝试使用现代虚拟化技术,如KVM、Hyper-V和VMwarevSphere等等,这些技术可以更好地管理和分配CPU和内存资源。 3.使用虚拟化技术现代的虚拟化技术可以更好地管理硬件资源,并提高它们的使用效率。 例如,在使用VMwarevSphere时,可以使用VMwareDistributedResourceScheduler(DRS)和DynamicResourceScheduler(DRS)等工具,这些工具可以根据资源需求,对虚拟机进行动态分配和调整。 类似地,XenServer和Hyper-V等虚拟化技术也提供了类似的功能。 4.调整网络配置多个虚拟机使用网络资源时,可能会出现性能瓶颈和延迟问题。 因此,需要配置网络资源,重点考虑网络吞吐量和带宽。 另外,还需要了解每个虚拟机使用的网络协议,以及它们的网络流量情况,这可以帮助更好地调整和优化网络资源的配置。 5.考虑基础设施优化除了硬件资源和网络配置,还需要考虑基础设施的优化。 例如,可以使用更快的存储设备,如固态硬盘(SSD)或闪存驱动器(SATA),这些设备可以提供更快的访问速度。 此外,还可以优化虚拟机的操作系统,例如,使用更轻量级的Linux发行版和应用程序,可以减少操作系统和应用程序的资源占用率,提高硬件资源的使用效率和性能。 总之,优化多个虚拟机使用硬件资源的效率和性能是企业必须面对的问题。 合理地计划和配置硬件资源,并使用现代虚拟化技术和工具,可以更好地管理和分配这些资源,并提高应用程序的运行效率和性能。


相关标签: 数据中心评估如何优化性能和效率数据中心评估指标的终极指南fair

本文地址:http://www.hyyidc.com/article/16580.html

上一篇:液体冷却在数据中心中的兴起变革性技术带来...
下一篇:数据中心冷却的智能方法人工智能和机器学习...

温馨提示

做上本站友情链接,在您站上点击一次,即可自动收录并自动排在本站第一位!
<a href="http://www.hyyidc.com/" target="_blank">好有缘导航网</a>